PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 6 | 1666-1671
Article title

Surgery of Graphs: M-Function and Spectral Gap

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We discuss behaviour of the spectral gap for quantum graphs when two metric graphs are glued together. It appears that precise answer to this question can be given using a natural generalisation of the Titchmarsh-Weyl M-functions.
Keywords
Publisher

Year
Volume
132
Issue
6
Pages
1666-1671
Physical description
Dates
published
2017-12
Contributors
author
  • Dept. of Mathematics, Stockholm Univ., 106 91, Stockholm, Sweden
References
  • [1] P. Kurasov, Ark. Mat. 46, 95 (2008), doi: 10.1007/s11512-007-0059-4
  • [2] P. Kurasov, J. Func. Anal. 254, 934 (2008), doi: 10.1016/j.jfa.2007.11.007
  • [3] M. Aizenman, H. Schanz, U. Smilansky, S. Warzel, arXiv: 1710.07958 http://arXiv.org/abs/1710.07958
  • [4] R. Band, G. Lévy, Ann. Henri Poincaré 18, 3269 (2017), doi: 10.1007/s00023-017-0601-2
  • [5] G. Berkolaiko, J. Kennedy, P. Kurasov, D. Mugnolo, J. Phys. A 50, 365201 (2017), doi: 10.1088/1751-8121/aa8125
  • [6] G. Berkolaiko, W. Liu, J. Math. Anal. Appl. 445, 803 (2017), doi: 10.1016/j.jmaa.2016.07.026
  • [7] N.T. Do, P. Kuchment, B. Ong, On resonant spectral gaps in quantum graphs. Functional analysis and operator theory for quantum physics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich 2017, p. 213, doi: 10.4171/175-1/11
  • [8] J. Kennedy, P. Kurasov, G. Malenova, D. Mugnolo, Ann. Henri Poincaré 17, 2439 (2016), doi: 10.1007/s00023-016-0460-2
  • [9] P. Kurasov, G. Malenová, S. Naboko, J. Phys. A 46, 275309 (2013), doi: 10.1088/1751-8113/46/27/275309
  • [10] P. Kurasov, S. Naboko, J. Spectral Theory 4, 211 (2014), doi: 10.4171/JST/67
  • [11] J. Rohleder, Proc. Am. Math. Soc. 145, 2119 (2017), doi: 10.1090/proc/13403
  • [12] P. Kurasov, S. Naboko, Surgery of graphs and spectral gap: Titchmarsh-Weyl operator-function approach, preprint 2017
  • [13] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs. Mathematical Surveys and Monographs, Vol. 186, American Mathematical Society, Providence (RI), 2013
  • [14] P. Kurasov, Quantum graphs: spectral theory and inverse problems, to appear in Brikhäuser, 2018
  • [15] O. Post, Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics, Vol. 2039, Springer, Heidelberg 2012, doi: 10.1007/978-3-642-23840-6
  • [16] M. Fiedler, Czechoslov. Math. J. 23 (98), 298 (1973) http://zbmath.org/?q=an:0265.05119
  • [17] S. Nicaise, Bull. Sci. Math. 111, 401 (1987)
  • [18] L. Friedlander, Ann. Inst. Fourier 55, 199 (2005), doi: 10.5802/aif.2095
  • [19] H. Weyl, Math. Ann. 71, 441 (1912) (in German), doi: 10.1007/BF01456804
  • [20] W.N. Everitt, J. Comput. Appl. Math. 171, 185 (2004), doi: 10.1016/j.cam.2004.01.010
  • [21] F. Gesztesy, E. Tsekanovskii, Math. Nachr. 218, 61 (2000), doi: 10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.0.CO;2-D
  • [22] S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, London Mathematical Society Lecture Note Series, Vol. 271, Cambridge University Press, Cambridge 2000, doi: 10.1017/CBO9780511758904
  • [23] R. Band, P. Kurasov, On Courant Theorem for Quantum Graphs, in preparation
  • [24] J. Behrndt, A. Luger, J. Phys. A 43, 474006 (2010), doi: 10.1088/1751-8113/43/47/474006
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n6p03kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.