Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1628-1633

Article title

Developing New Routine for Processing Two-Dimensional Coincidence Doppler Energy Spectra and Evaluation of Electron Subsystem Properties in Metals

Content

Title variants

Languages of publication

EN

Abstracts

EN
A digital coincidence Doppler broadening (CDB) spectrometer consisting of two HPGe detectors is assembled; the energy resolution of each detector is 1.1 keV at energies near the annihilation line. Two desktop applications for CDB spectra processing are developed. TLIST Processor converts two-dimensional CDB spectra into one-dimensional spectra. Another tool SW Calculator deconvolutes the experimental CDB spectra into contributions from positron annihilation with valence, core and conduction band electrons. The program estimates the energies of the corresponding electrons and evaluates S and W parameters of the CDB spectra.

Year

Volume

132

Issue

5

Pages

1628-1633

Physical description

Dates

published
2017-11

Contributors

author
  • Center for Photochemical Sciences, Bowling Green State University, OH, USA
author
  • NRC "Kurchatov Institute" - Institute for Theoretical and Experimental Physics, B. Cheremuskinskaya st., 25. 117218 Moscow Russia
  • National Research Nuclear University "MEPhI", 115409, Moscow, Russia
  • Lomonosov Moscow State University, Chemical Department, Leninskie Gory, Moscow, Russia
author
  • NRC "Kurchatov Institute" - Institute for Theoretical and Experimental Physics, B. Cheremuskinskaya st., 25. 117218 Moscow Russia
  • Lomonosov Moscow State University, Chemical Department, Leninskie Gory, Moscow, Russia
  • D. Mendeleyev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047, Moscow, Russia
author
  • Center for Photochemical Sciences, Bowling Green State University, OH, USA

References

  • [1] R. Krause-Rehberg, H.S. Leipner, Series in Solid-State Sciences Positron Annihilation in Semiconductors, vol. 49, (1999), doi: 10.1007/978-3-662-03893-2 Springer
  • [2] O.E. Mogensen, Springer Series in Chemical Physics Positron Annihilation in Chemistry vol. 15, (1995), doi: 10.1007/978-3-642-85123-0_2
  • [3] M. Conti, Physica Medica 25, 1 (2009), doi: 10.1016/j.ejmp.2008.10.001
  • [4] F. Tuomisto, I. Makkonen, Reviews of Modern Physics 85, 1583 (2013), doi: 10.1103/revmodphys.85.1583
  • [5] M. Haaks, T. Staab, K. Maier, Nucl. Instr. Meth. Phys. Res. A 569, 829 (2006), doi: 10.1016/j.nima.2006.08.117
  • [6] C.Y. Xi, B.J. Ye, W. Kong, H.M. Weng, X.Y. Zhou, R.D. Han, Meas. Sci. Techn. 16, 1212 (2005), doi: 10.1088/0957-0233/16/5/022
  • [7] E.D. Nascimento, V.R. Vanin, N.L. Maidana, O. Helene, J. Phys.: Conf. Ser. 443, 012024 (2013), doi: 10.1088/1742-6596/443/1/012024
  • [8] P. Pikart, C. Hugenschmidt, Nucl. Instr. Meth. Phys. Res. A 750, 61 (2014), doi: 10.1016/j.nima.2014.01.066
  • [9] V.B. Beresteckij, E.M. Lifšic, L.P. Pitaevskij, Quantum electrodynamics, Butterworth-Heinemann, Oxford 2008
  • [10] E.D. Nascimento, O. Helene, V. Vanin, M.D. Cruz, and M. Moralles, Nucl. Instr. Meth. Phys. Res. A 609, 244 (2009), doi: 10.1016/j.nima.2009.07.051
  • [11] N.W. Ashcroft, N.D. Mermin, Solid state physics, Brooks/Cole Thomson Learning, South Melbourne 2012
  • [12] W. Lotz, J. Opt. Soc. Am. 60, 206 (1970), doi: 10.1364/JOSA.60.000206

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n5p43kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.