PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1611-1615
Article title

Impact of Impulse Shot Peening Parameters on Properties of Stainless Steel Surface

Content
Title variants
Languages of publication
EN
Abstracts
EN
Shot peening was applied to austenitic stainless steel 1.4541 (EN). The surface treatment was performed at various impact energies E, impact densities j and ball diameters D. This resulted in improved microhardness, which increases monotonically with the increase of E, j and 1/D. However, its changes with E and j achieve saturation at about 400 HV0.1. On the contrary, no saturation is observed in the investigated range for 1/D. In the un-shot peened 1.4541 (EN) steel, the lifetime component of low intensity was found with use of positron annihilation lifetime spectroscopy (PALS). It corresponds to positron annihilation from delocalized state of positrons in bulk. In the shot peened samples the bulk component is no longer observed. Instead, two types of defects can be identified: vacancy-like defects coupled with edge dislocations and vacancies or their small clusters (consisting 3÷5 vacancies). The results of PALS and hardness testing do not correspond very well, especially in the case of the samples shot peened with balls of varying diameters. The most probable reason for this are different depth profiles of both methods. It seems that the defects, which are responsible for the increase of static microhardness above 400 HV0.1 are located mostly below the surface layer penetrated by positrons.
Keywords
Contributors
author
  • Maria Curie-Skłodowska University, Institute of Physics, Department of Nuclear Methods, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
author
  • Maria Curie-Skłodowska University, Institute of Physics, Department of Nuclear Methods, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
author
  • Maria Curie-Skłodowska University, Institute of Physics, Department of Nuclear Methods, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
References
  • [1] V. Azar, B. Hashemi, M. Rezaee Yazdi, Surf. Coat. Technol. 204, 3546 (2010), doi: 10.1016/j.surfcoat.2010.04.015
  • [2] Q. Feng, C. Jiang, Z. Xu, L. Xie, V. Ji, Surf. Coat. Technol. 226, 140 (2013), doi: 10.1016/j.surfcoat.2013.03.047
  • [3] B. Nasiłowska, Z. Bogdanowicz, M. Wojucki, J. Construct. Steel Res. 115, 276 (2015), doi: 10.1016/j.jcsr.2015.08.041
  • [4] R. Zaleski, K. Zaleski, M. Gorgol, M. Wiertel, Appl. Phys. A 120, 551 (2015), doi: 10.1007/s00339-015-9214-0
  • [5] R. Zaleski, M. Gorgol, K. Zaleski, Phys. Proced. 35, 92 (2012), doi: 10.1016/j.phpro.2012.06.017
  • [6] P. Horodek, J. Dryzek, Mater. Sci. Forum 666, 46 (2011), doi: 10.4028/www.scientific.net/MSF.666.46
  • [7] P. Horodek, K. Siemek, J. Dryzek, A.G. Kobets, M. Wróbel, Tribol. Lett. 65, 30 (2017), doi: 10.1007/s11249-017-0813-0
  • [8] F. Becvár, J. Cízek, I. Procházka, Acta Phys. Pol. A 113, 1279 (2008), doi: 10.12693/APhysPolA.113.1279
  • [9] J. Dryzek, D. Singleton, Nucl. Instrum. Methods Phys. Res. B 252, 197 (2006), doi: 10.1016/j.nimb.2006.08.017
  • [10] J. Dryzek, K. Siemek, J. Appl. Phys. 114, 224901 (2013), doi: 10.1063/1.4843035
  • [11] A. Dupasquier, in: Positrons in Solids, Ed. P. Hautojärvi, Springer-Verlag, Berlin 1979, p. 197, doi: 10.1007/978-3-642-81316-0_5
  • [12] F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013), doi: 10.1103/revmodphys.85.1583
  • [13] T. Yoshiie, X. Cao, Q. Xu, K. Sato, T.D. Troev, Phys. Status Solidi C 6, 2333 (2009), doi: 10.1002/pssc.200982115
  • [14] J. Čížek, I. Procházka, J. Kočík, E. Keilová, Phys. Status Solidi A 178, 651 (2000), doi: 10.1002/1521-396X(200004)178:2<651::AID-PSSA651>3.0.CO;2-O
  • [15] L. Petrov, T. Troev, N. Nankov, E. Popov, J. Phys. Conf. Series 207, 012037 (2010), doi: 10.1088/1742-6596/207/1/012037
  • [16] Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, M. Hasegawa, Phys. Rev. B 67, 224202 (2003), doi: 10.1103/PhysRevB.67.224202
  • [17] J. Kuriplach, O. Melikhova, C. Domain, C.S. Becquart, D. Kulikov, L. Malerba, M. Hou, A. Almazouzi, C.A. Duque, A.L. Morales, Appl. Surf. Sci. 252, 3303 (2006), doi: 10.1016/j.apsusc.2005.08.075
  • [18] M.J. Puska, R.M. Nieminen, J. Phys. F Met. Phys. 13, 333 (1983), doi: 10.1088/0305-4608/13/2/009
  • [19] H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani, Mater. Sci. Eng. A 350, 95 (2003), doi: 10.1016/S0921-5093(02)00705-0
  • [20] B.L. Shivachev, T. Troev, T. Yoshiie, J. Nucl. Mater. 306, 105 (2002), doi: 10.1016/S0022-3115(02)01227-8
  • [21] W. Zhang, B. Gu, J. Liu, B. Ye, Comp. Mater. Sci. 105, 32 (2015), doi: 10.1016/j.commatsci.2015.04.019
  • [22] Y.-K. Park, J.T. Waber, M. Meshii, C.L. Snead, C.G. Park, Phys. Rev. B 34, 823 (1986), doi: 10.1103/PhysRevB.34.823
  • [23] J. Gubicza, Defect Structure and Properties of Nanomaterials, 2nd and extended ed., Woodhead Publ., Duxford 2017
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n5p39kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.