PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1606-1610
Article title

Characterization of Defects in Titanium Created by Hydrogen Charging

Content
Title variants
Languages of publication
EN
Abstracts
EN
Hydrogen interaction with vacancies in α-Ti was investigated employing positron lifetime spectroscopy combined with ab initio theoretical modeling of vacancy-hydrogen complexes. Ab initio modeling revealed that multiple hydrogen atoms up to 7 can be trapped at vacancies in the α-Ti lattice. Trapped H atoms are located close to the nearest neighbor tetrahedral sites around the centre of vacancy. Lifetimes of positrons trapped at vacancies associated with various numbers of hydrogen atoms were calculated. Positron lifetime measurement of H-loaded α-Ti samples revealed that phase transition into the hydride phase introduced dislocations. Vacancies were created by H loading as well and agglomerated into small vacancy clusters.
Keywords
EN
Contributors
author
  • Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
author
  • Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
author
  • Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
author
  • Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
author
  • Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
author
  • Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
author
  • Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
  • Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague, Czech Republic
References
  • [1] Materials Properties Handbook: Titanium Alloys, Eds. R. Boyer, G. Welsch, E.W. Collings, ASM International, 1994
  • [2] H. Numakura, M. Koiwa, Acta Metall. 32, 1799 (1984), doi: 10.1016/0001-6160(84)90236-0
  • [3] E. Tal-Gutelmacher, D. Eliezer, JOM 57, 46 (2005), doi: 10.1007/s11837-005-0115-0
  • [4] A. Pundt, R. Kirchheim, Ann. Rev. Mater. Res. 36, 505 (2006), doi: 10.1146/annurev.matsci.36.090804.094451
  • [5] R. Kirchheim, Acta Mater. 55, 5129 (2007), doi: 10.1016/j.actamat.2007.05.047
  • [6] R. Kirchheim, Int. J. Mater. Res. 100, 483 (2009), doi: 10.3139/146.110065
  • [7] G. Lu, E. Kaxiras, Phys. Rev. Lett. 94, 155501 (2005), doi: 10.1103/PhysRevLett.94.155501
  • [8] Y. Jiraskova, J. Bursik, A. Zemanova, J. Cizek, P. Hruska, O. Zivotsky, Int. J. Hydrogen Energy 42, 6885 (2017) ., doi: 10.1016/j.ijhydene.2017.01.083
  • [9] S. Li, Y. Li, Y.-C. Lo, T.I. Neeraj, R. Srinivasan, X. Ding, J. Sun, L. Qi, P. Gumbsch, J. Li, Int. J. Plastic. 74, 175 (2015), doi: 10.1016/j.ijplas.2015.05.017
  • [10] J. Čížek, I. Procházka, F. Bečvář, R. Kužel, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt, Phys. Rev. B 69, 224106 (2004), doi: 10.1103/PhysRevB.69.224106
  • [11] Y. Fukai, N. Okuma, Phys. Rev. Lett. 73, 1640 (1994), doi: 10.1103/PhysRevLett.73.1640
  • [12] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. van de Walle, Rev. Mod. Phys. 86, 253 (2014), doi: 10.1103/RevModPhys.86.253
  • [13] W. Xing, X.Q. Chen, Q. Xie, G. Lu, D.Z. Li, Y.Y. Li, Int. J. Hydrogen Energy 36, 11321 (2014), doi: 10.1016/j.ijhydene.2014.05.032
  • [14] M. Benediktsson, K.K.G. Myrdal, P. Maurya, A. Pedersen, J. Phys. Condens. Matter 25, 375401 (2013), doi: 10.1088/0953-8984/25/37/375401
  • [15] W.A. Counts, C. Wolverton, R. Gibala, Acta Mater. 58, 4730 (2010), doi: 10.1016/j.actamat.2010.05.010
  • [16] D. Connétable, J. Huez, E. Andrieu, C. Mijoule, J. Phys. Condens. Matter 23, 405401 (2011), doi: 10.1088/0953-8984/23/40/405401
  • [17] R. Krause-Rehberg, H.S. Leipner, in: Positron Annihilation in Semiconductors, Springer-Verlag, Berlin 1999
  • [18] G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996), doi: 10.1103/PhysRevB.54.11169
  • [19] G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999), doi: 10.1103/PhysRevB.59.1758
  • [20] Y. Wang, J.P. Perdew, Phys. Rev. B 44, 13298 (1991), doi: 10.1103/PhysRevB.44.13298
  • [21] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976), doi: 10.1103/PhysRevB.13.5188
  • [22] M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994), doi: 10.1103/RevModPhys.66.841
  • [23] E. Boroński, R.M. Nieminen, Phys. Rev. B 34, 3820 (1986), doi: 10.1103/PhysRevB.34.3820
  • [24] M.J. Puska, R.M. Nieminen, J. Phys. F Met. Phys. 13, 333 (1983), doi: 10.1088/0305-4608/13/2/009
  • [25] F. Bečvář, J. Čížek, I. Procházka, J. Janotová, Nucl. Instrum. Methods Phys. Res. A 539, 372 (2005), doi: 10.1016/j.nima.2004.09.031
  • [26] Q. Xu, A. Van der Ven, Phys. Rev. B 76, 064207 (2007), doi: 10.1103/PhysRevB.76.064207
  • [27] Y. Fukai, in: The Metal-Hydrogen System, Springer-Verlag, Berlin 2005
  • [28] O. Le Bacq, F. Willaime, A. Pasturel, Phys. Rev. B 59, 8508 (1999), doi: 10.1103/PhysRevB.59.8508
  • [29] D.R. Trinkle, M.D. Jones, R.G. Hennig, S.P. Rudin, R.C. Albers, J.W. Wilkins, Phys. Rev. B 73, 094123 (2006), doi: 10.1103/PhysRevB.73.094123
  • [30] Y.-W. You, X.-S. Kong, X.-B. Wu, Y.-C. Xu, Q.F. Fang, J.L. Chen, G.-N. Luo, C.S. Liu, B.C. Pan, Z. Wang, AIP Adv. 3, 012118 (2013), doi: 10.1063/1.4789547
  • [31] F. Lukáč, J. Čížek, J. Knapp, I. Procházka, P. Zháňal, R.K. Islamgaliev, J. Phys. Conf. Ser. 674, 012007 (2016), doi: 10.1088/1742-6596/674/1/012007
  • [32] P. Hruška, J. Čížek, J. Knapp, F. Lukáč, O. Melikhova, S. Mašková, L. Havela, J. Drahokoupil, Int. J. Hydrogen Energy 42, 22557 (2017), doi: 10.1016/j.ijhydene.2017.05.104
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n5p38kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.