As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
Estimate of the Crystallite Size for Nanocrystalline AISI 316L Stainless Steel and Armco Iron Processed by Hydrostatic Extrusion Using Variable Energy Positron Beam
The paper presents the results of research of nanocrystalline AISI 316L type stainless steel and nanocrystalline Armco pure iron processed by severe plastic deformation using hydrostatic extrusion method. Surface and subsurface of the steel samples extruded at different pressure were investigated using variable energy positron beam. It enabled us to determine the positron diffusion length and compare its values with those for annealed AISI 304 stainless steel. Furthermore positron lifetime and microhardness were measured for all the samples and X-ray diffraction was used to estimate the crystallite size.
Institute of High Pressure Physics, Polish Academy of Sciences (Unipress), Sokołowska 29, 01-142 Warszawa, Poland
References
[1] A. Di Schino, I. Salvatori, J.M. Kenny, J. Mater. Sci. 37, 4561 (2002), doi: 10.1023/A:1020631912685
[2] E. Dryzek, M. Sarnek, M. Wróbel, J. Mater. Sci. 49, 8449 (2014), doi: 10.1007/s10853-014-8555-y
[3] E. Dryzek, M. Sarnek, K. Siemek, Nukleonika 58, 213 (2013)
[4] J.P. Hirth, J. Lothe, Theory of Dislocations, Wiley, New York 1982
[5] R.S. Averback, Z. Phys. D 26, 84 (1993), doi: 10.1007/BF01429112
[6] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Vol. 127, Solid-State Sciences, Springer, Berlin 1999
[7] R. Krause-Rehberg, V. Bondarenko, E. Thiele, R. Klemm, N. Schell, Nucl. Instrum. Methods Phys. Res. B 240, 719 (2005), doi: 10.1016/j.nimb.2005.04.130
[8] W. Pachla, J. Skiba, M. Kulczyk, S. Przybysz, M. Przybysz, M. Wróblewska, R. Diduszko, R. Stępniak, J. Bajorek, M. Radomski, W. Fąfara, Mater. Sci. Eng. A 615, 116 (2014), doi: 10.1016/j.msea.2014.07.069
[9] P. Horodek, A.G. Kobets, I.N. Meshkov, A.A. Sidorin, O.S. Orlov, Nukleonika 60, 725 (2015), doi: 10.1515/nuka-2015-0130
[10] J. Kansy, Nucl. Instrum. Methods Phys. Res. A 374, 235 (1996), doi: 10.1016/0168-9002(96)00075-7
[11] H. Garbacz, M. Lewandowska, W. Pachla, K.J. Kurzydłowski, J. Microsc. 223, 272 (2006), doi: 10.1111/j.1365-2818.2006.01646.x
[19] H. Natter, M. Schmelzer, M.S. Löffler, C.E. Krill, A. Fitch, R. Hempelmann, J. Phys. Chem. B 104, 2467 (2000), doi: 10.1021/jp991622d
[20] S. Valkealahti, R.M. Nieminen, Appl. Phys. A 32, 95 (1983), doi: 10.1007/BF00617834
[21] A. Van Veen, H. Schut, M. Clement, J.M.M. De Nijs, A. Kruseman, M.R. Ijpma, Appl. Surf. Sci. 85, 216 (1995), doi: 10.1016/0169-4332(94)00334-3
[22] J. Dryzek, P. Horodek, Nucl. Instrum. Methods Phys. Res. B 266, 4000 (2008), doi: 10.1016/j.nimb.2008.06.033
[23] Y.C. Wu, Y.C. Jean, Phys. Status Solidi C 4, 3506 (2010)
[24] Y.K. Park, J.T. Waber, M. Meshii, C.L. Snead Jr., C.G. Park, Phys. Rev. B 34, 823 (1986), doi: 10.1103/PhysRevB.34.823
[25] J. Cizek, I. Procházka, J. Koccaroník, E. Keilová, Phys. Status Solidi A 178, 651 (2000), doi: 10.1002/1521-396X(200004)178:2<651::AID-PSSA651>3.0.CO;2-O