PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1593-1597
Article title

Positron Annihilation in Magnetite Nanopowders Prepared by Co-Precipitation Method

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nanosized iron oxide powders are materials considered with regard to its application in medical therapy called hyperthermia. Magnetite nanopowders with crystallite size varying from 6.6 to 11.8 nm have been prepared by the co-precipitation method. In this study a change of a crystallite size is driven mainly by varying of initial pH of water ammonia solution in which a process of magnetite precipitation runs. Crystallographic structures and phase composition obtained samples and the size of magnetite nanoparticles were determined by X-ray diffraction method. Positron lifetime spectroscopy has been used to assess defectiveness of microstructure. Experimental positron annihilation spectra were successfully resolved into three lifetime components. It appears that from point of view of microstructure the defects concentrations in studied nanopowder samples are very high which causes a saturation of positron trapping.
Keywords
Contributors
author
  • Department of Nuclear Methods, Faculty of Mathematics, Physics and Computer Science, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Department of Nuclear Methods, Faculty of Mathematics, Physics and Computer Science, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Department of Nuclear Methods, Faculty of Mathematics, Physics and Computer Science, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Lublin, Poland
References
  • [1] B. Chudzik, A. Miaskowski, Z. Surowiec, G. Czernel, T. Duluk, A. Marczuk, M. Gagoś, Int. J. Hypertherm. 32, 842 (2016), doi: 10.1080/02656736.2016.1212277
  • [2] C. Billotey, C. Wilhelm, M. Devaud, C. Bacrij, J. Bittoun, F. Gazeau, Magn. Reson. Med. 49, 646 (2003), doi: 10.1007/s40097-014-0099-9
  • [3] V.V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, H. Parihar, Appl. Nanosci. 4, 385 (2014), doi: 10.1007/s13204-013-0216-y
  • [4] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003), doi: 10.1088/0022-3727/36/13/201
  • [5] M. Panczyk, Farmaceutyczny Przegląd Naukowy 10, 39 (2009) (in Polish)
  • [6] G.M. da Costa, E. de Grave, P.M.A. de Bakker, R.E. Vandenberghe, J. Solid State Chem. 113, 405 (1994), doi: 10.1006/jssc.1994.1388
  • [7] M. Tajabadi, M.E. Khosroshahi, MAPCBEE Proc. 3, 140 (2012), doi: 10.1016/j.apcbee.2012.06.060
  • [8] E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, J. Appl. Phys. 2, 041302 (2015), doi: 10.1063/1.4935688
  • [9] A. Hervault, Nguyen Thi Kim Thanh, Nanoscale 6, 11553 (2014), doi: 10.1039/c4nr03482a
  • [10] C.S.S.R. Kumar, F. Mohammad, Adv. Drug. Deliv. Rev. 63, 789 (2011), doi: 10.1016/j.addr.2011.03.008
  • [11] J.V. Olsen, P. Kirkegaard, N.J. Pedersen, M. Eldrup, Phys. Status Solidi C 4, 4004 (2007), doi: 10.1002/pssc.200675868
  • [12] W.P. Neves, C.R. Soares Sousa, A.L. Miranda-Vilela, G.L. Silva Santos, P.E.N. de Souza, J.P. Figueiró Longo, Z.G. Marques Lacava, J. Cancer Sci. Ther. 9, 393 (2017), doi: 10.4172/1948-5956.1000448
  • [13] F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013), doi: 10.1103/revmodphys.85.1583
  • [14] H.E. Schaefer, R. Würschum, R. Birringer, H. Gleiter, Phys. Rev. B 38, 9545 (1988), doi: 10.1103/PhysRevB.38.9545
  • [15] J. Kuriplach, Acta Phys. Pol. A 125, 722 (2014), doi: 10.12693/APhysPolA.125.722
  • [16] D. Das, M.B. Chakraborti, K. Choudhury, P.M.G. Nambissan, B.R.S. Babu, P. Sen, Sangeeta, C.K. Majumdar, Bull. Mater. Sci 15, 161 (1992), doi: 10.1007/BF02927442
  • [17] K. Uhlmann, D.T. Britton, S. Heger, Mater. Sci. Forum 175-178, 225 (1995), doi: 10.4028/www.scientific.net/MSF.175-178.225
  • [18] A. Seeger, Appl. Phys. 4, 183 (1974), doi: 10.1007/BF00884229
  • [19] A. Cabral-Prieto, A.A. Reyes-Felipe, M.G. Siles-Dotor, Nanostruct. Mater. 10, 311 (1998), doi: 10.1016/S0965-9773(98)00071-3
  • [20] P.M.G. Nambissan, C. Upadhyay, H.C. Verma, J. Appl. Phys. 93, 6320 (2003), doi: 10.1063/1.1569973
  • [21] S. Bandyopadhyay, A. Roy, D. Das, S.S. Ghugre, J. Ghose, Philos. Mag. 83, 765 (2003), doi: 10.1080/0141861021000042271
  • [22] S. Chakraverty, Subarna Mitra, K. Mandal, P.M.G. Nambissan, S. Chattopadhyay, Phys. Rev. B 71, 024115 (2005), doi: 10.1103/PhysRevB.71.024115
  • [23] P. Predeep, A.S. Prasad, S.N. Dolia, M.S. Dhawan, M.S. Das, S.K. Chaudhuri, Vipasha Ghose, IEEE Trans. Magn. 46, 847 (2010), doi: 10.1109/TMAG.2009.2031109
  • [24] H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, Visnyk Lviv Univ. Ser. Phys. N 40, 200 (2007)
  • [25] J. Kansy, D Giebel, J. Phys. Conf. Ser. 265, 012030 (2011), doi: 10.1088/1742-6596/265/1/012030
  • [26] J. Dryzek, J. Phys. Condens. Matter 12, 137 (2000), doi: 10.1088/0953-8984/12/2/304
  • [27] G. Vallejo-Fernandez, O. Whear, A.G. Roca, S. Hussain, J. Timmis, V. Patel, K. O'Grady, J. Phys. D Appl. Phys. 46, 312001 (2013), doi: 10.1088/0022-3727/46/31/312001
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n5p35kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.