Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The positronium atom (Ps) is widely used as a probe to characterize nanoporous and mesoporous materials. Existing theoretical models for describing Ps annihilation rates by pick-off processes generally treat Ps as a point particle confined in a potential well. Hence these models do not justify any change in the internal structure of Ps, which is experimentally accessible by means of the contact density parameter. Recently we formulated a two-particle model in which only the electron is confined in the cavity, while the positron is moving freely and feels the medium via a positive work function. We present here a numerical treatment of the problem of calculating contact densities and pick-off annihilation rates, by using a variational method. Results are in agreement with experimental data for a large class of materials, and suggest a way to connect these data with pore sizes and positron work functions.
Discipline
- 34.80.Lx: Recombination, attachment, and positronium formation
- 78.70.Bj: Positron annihilation(for positron states, see 71.60.+z in electronic structure of bulk materials; for positronium chemistry, see 82.30.Gg in physical chemistry and chemical physics)
- 36.10.Dr: Positronium(see also 82.30.Gg Positronium chemistry)
Journal
Year
Volume
Issue
Pages
1575-1578
Physical description
Dates
published
2017-11
Contributors
author
- Department of Physics, Università degli Studi di Milano, via Celoria 16 I-20133 Milano, Italy
author
- Department of Physics, Università degli Studi di Milano, via Celoria 16 I-20133 Milano, Italy
- INFN, sezione di Milano, via Celoria 16 I-20133 Milano, Italy
author
- Department of Aerospace Science and Technology, Politecnico di Milano, via LaMasa 34, I-20156 Milano, Italy
References
- [1] A. Dupasquier, P. DeNatale, A. Rolando, Phys. Rev. B 43, 10036 (1991), doi: 10.1103/PhysRevB.43.10036
- [2] V.I. Goldanskii, At. Energy Rev. 6, 3 (1968)
- [3] G. Consolati, F. Quasso, Appl. Phys. A 52, 295 (1991), doi: 10.1007/BF00324767
- [4] S.J.Tao, J. Chem. Phys. 56, 5499 (1972), doi: 10.1063/1.1677067
- [5] G. Consolati, F. Quasso, D. Trezzi, Plos One 9, e109937 (2014), doi: 10.1371/journal.pone.0109937
- [6] W. Brandt, S. Berko, W.W. Walker, Phys. Rev. 120, 1289 (1960), doi: 10.1103/PhysRev.120.1289
- [7] P.A. Sterne, L. Larrimore, P. Hastings, A.L.R. Bug, Radiat. Phys. Chem. 68, 409 (2003), doi: 10.1016/S0969-806X(03)00192-0
- [8] S.V. Stepanov, D,S. Zvezhinskiy, V.M. Byakov, Mater. Sci. Forum 733, 7 (2013), doi: 10.4028/www.scientific.net/MSF.733.7
- [9] M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994), doi: 10.1103/RevModPhys.66.841
- [10] Y. Nagashima, Y. Morinaka, T. Kurihara, Y. Nagai, T. Hyodo, T. Shirada, K. Nahara, Phys. Rev. B 58, 12676 (1998), doi: 10.1103/PhysRevB.58.12676
- [11] T. Fülöp, Z. Farkas, A. Seeger, J. Major, arXiv: condmat/0304442v1 http://arXiv.org/abs/condmat/0304442v1
- [12] G.M. Tanzi, F. Castelli, G. Consolati, Phys. Rev. Lett. 116, 033401 (2016), doi: 10.1103/PhysRevLett.116.033401
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n5p31kz