Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1509-1514
Article title

Proton Conductivity and Free Volume Properties in Per-Fluorinated Sulfonic acid/PTFE Copolymer for Fuel Cell

Title variants
Languages of publication
The proton conductivity mechanism in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte membranes has been investigated. Three samples of Fumapem® F-950, F-1050 and F-14100 membranes with different ion exchange capacity 1.05, 0.95, and 0.71 meq/g, respectively, were used in this study after drying. The o-Ps hole volume size (V_{FV,Ps}) was quantified using the positron annihilation lifetime technique while the proton conductivities (σ ) were measured using LCR Bridge as function of temperature. It was found that as the ion exchange capacity increases, the proton conductivity increases and the free volume expands. Temperature dependences of proton conductivity and the o-Ps hole volume size (V_{FV,Ps}) reflect the glass transition temperature of the membrane. A good linear correlation between the reciprocal of the o-Ps hole volume size (1/V_{FV,Ps}) and log(σ)+Δ E_a/2.303k_{B}T, (where ΔE_a is the activation energy, T is the absolute temperature and k_{B} is the Boltzmann constant) at different temperatures indicate that the ionic motion in dry Fumapem® is governed by the free volume. A linear relationship between the critical hole size γ V*_{i} and the ion exchange capacity was also achieved.
  • Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt
  • Renewable Energy Science & Engineering Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, P.O. Box 62511 Beni-Suef, Egypt
  • Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt
  • Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt
  • [1] G. Hoogers, in: Fuel Cell Technology Handbook, Ch. 9, CRC Press, Boca Raton (FL) 2002
  • [2] B. Sørensen, in: Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier Academic Press, London 2005$&hl=pl&source=gbs_ViewAPI&redir_esc=y#v=onepage&q&f=false
  • [3] R.P. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz, in:Fuel Cell: Fundamentals, Wiley, New York 2005, doi: 10.1002/9781119191766
  • [4] F. Barbir, in: PEM Fuel Cells: Theory and Practice, Elsevier Academic Press, MA 2005
  • [5] H.F.M. Mohamed, K. Ito, Y. Kobayashi, N. Takimoto, Y. Takeoka, A. Ohira, Polymer 49, 3091 (2008), doi: 10.1016/j.polymer.2008.05.003
  • [6] M. Wakizoe, O. Velev, A.S. Srinivasan, Electrochim. Acta 40, 335 (2001), doi: 10.1016/0013-4686(94)00269-7
  • [7] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E.V. Wagner, B.D. Freeman, D.J. Cookson, Science 318, 254 (2007), doi: 10.1126/science.1146744
  • [8] O. Borodin, G.D. Smith, Macromolecules 39, 1620 (2006), doi: 10.1021/ma052277v
  • [9] N. Petzetakis, C.M. Doherty, A.W. Thornton, X.C. Chen, P. Cotanda, A.J. Hill, N.P. Balsara, Nature Commun. 6, 7629-1 (2015), doi: 10.1038/ncomms8529
  • [10] S.T. Tao, J. Chem. Phys. 56, 5499 (1972), doi: 10.1063/1.1677067
  • [11] M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981), doi: 10.1016/0301-0104(81)80307-2
  • [12] H. Nakanishi, S.J. Wang, Y.C. Jean, in: Positron Annihilation Studies of Fluids, Ed. S.C. Sharam, World Sci., Singapore 1988, p. 292
  • [13] J.V. Olsen, P. Kirkegaard, N.J. Pedersen, M. Eldrup, Phys. Status Solidi C 4, 4004 (2007), doi: 10.1002/pssc.200675868
  • [14] S. Devikal, P. Kamaraja, M. Arthanareeswari, Chem. Sci. Trans. 2, S129 (2013), doi: 10.7598/cst2013.26
  • [15] K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, Y. Kobayashi, J. Rad. Phys. Chem. 58, 525 (2000), doi: 10.1016/S0969-806X(00)00211-5
  • [16] H. Park, Y. Kim, W.H. Hong, Y.S. Choi, H. Lee, Macromolecules 38, 2289 (2005), doi: 10.1021/ma047650y
  • [17] Y. Park, Y. Yamazaki, Polym. Bull. 53, 181 (2005), doi: 10.1007/s00289-004-0310-0
  • [18] H.F.M. Mohamed, Y. Ito, M. Imai, J. Chem. Phys. 105, 4841 (1996), doi: 10.1063/1.472321
  • [19] H.F.M. Mohamed, K. Ito, Y. Kobayashi, N. Takimoto, Y. Takeoka, A. Ohira, Polymer 49, 3091 (2008), doi: 10.1021/jp808960w
  • [20] C.L. Wang, Y. Kobayashi, W. Zheng, C. Zhang, Y. Nagai, M. Hasegawa, Phys. Rev. B 63, 064204 (2001), doi: 10.1103/PhysRevB.63.064204
  • [21] M. Hema, S. Selvasekarapandian, H. Nithya, A. Sakunthala, D. Arunkumar, Ionics 15, 487 (2009), doi: 10.1007/s11581-008-0254-8
  • [22] N. Agmon, Chem. Phys. Lett. 244, 456 (1995), doi: 10.1016/0009-2614(95)00905-J
  • [23] F. Loureiro, E.S. de Marins, G.D.C. dos Anjos, A.M. Rocco, R.P. Pereira, Polímeros 24, 49 (2014), doi: 10.4322/polimeros.2014.070
  • [24] R.K. Nagarale, G.S. Gohil, V.K. Shahi, J. Membrane Sci. 280, 389 (2006), doi: 10.1016/j.memsci.2006.01.043
  • [25] T. Miyamoto, K. Shibayama, J. Appl. Phys. 44, 5372 (1973), doi: 10.1063/1.1662158
  • [26] S.J. Pas, M.D. Ingram, K. Funke, A.J. Hill, Electrochim. Acta 50, 3955 (2005), doi: 10.1016/j.electacta.2005.02.058
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.