Journal
Article title
Title variants
Languages of publication
Abstracts
Due to its fascinating properties such as high surface area, very good electrical and thermal conductivity, excellent mechanical properties, optical and electrochemical properties, graphene may be the ideal material as a substrate of nanocomposites for applications in electronics. Graphene layer can be used as a conductive matrix allowing good contact between crystallites of nanomaterials. Despite pure graphene, its composites with other species can be of interest. In this paper the results of studies on the effect of methods and parameters of synthesis, for obtaining composites graphene/Fe₂O₃ on their structural properties and electrical properties are presented. A series of experiments was conducted using a commercially available graphene (Graphene Nanopowder AO-3) and iron nitrate. The materials were obtained using two pressure methods: pressure synthesis in the autoclave and synthesis in the microwave solvothermal reactor. The syntheses were carried out in a solution of ethanol. The specific surface area, helium density, morphology, phase composition, thermal properties and electric conductivity of the obtained composites were investigated.
Discipline
Journal
Year
Volume
Issue
Pages
1424-1429
Physical description
Dates
published
2017-10
received
2017-06-26
(unknown)
2017-08-16
Contributors
author
- Institute of Chemical and Environment Engineering, Faculty of Chemical Engineering, West Pomeranian University of Technology, gen. K. Pułaskiego 10, 70-322 Szczecin, Poland
author
- Institute of Chemical and Environment Engineering, Faculty of Chemical Engineering, West Pomeranian University of Technology, gen. K. Pułaskiego 10, 70-322 Szczecin, Poland
author
- Institute of Chemical and Environment Engineering, Faculty of Chemical Engineering, West Pomeranian University of Technology, gen. K. Pułaskiego 10, 70-322 Szczecin, Poland
author
- Institute of Organic Chemical Technology, Faculty of Chemical Engineering, West Pomeranian University of Technology, gen. K. Pułaskiego 10, 70-322 Szczecin, Poland
author
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, al. Piastów 19, 70-310 Szczecin, Poland
References
- [1] A.K. Geim, Science 324, 1530 (2009), doi: 10.1126/science.1158877
- [2] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005), doi: 10.1073/pnas.0502848102
- [3] M.S. Fuhrer, Nature 459, 1037 (2009), doi: 10.1038/4591037e
- [4] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008), doi: 10.1126/science.1156965
- [5] E. Kamali Heidari, B. Zhang, M. Heydarzadeh Sohi, A. Ataie, J.K. Kim, J. Mater. Chem. A 2, 8314 (2014), doi: 10.1039/c4ta00507d
- [6] S. Xuan, F. Wang, Y.X.J. Wang, J.C. Yu, K.C.F. Leung, J. Mater. Chem. 20, 5086 (2010), doi: 10.1039/C0JM00159G
- [7] J. Jacob, M.A. Khadar, J. Appl. Phys. 107, 114310 (2010), doi: 10.1063/1.3429202
- [8] S. Seifikar, T. Rawdanowicz, W. Straka, C. Quintero, N. Bassiri-Gharb, J. Schwartz, J. Magn. Magn. Mater. 61, 255 (2014), doi: 10.1016/j.jmmm.2014.03.004
- [9] J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 254, 5844 (2009), doi: 10.1016/j.apsusc.2008.03.065
- [10] K.S. Lin, A.K. Adhikari, Z.Y. Tsai, Y.P. Chen, T.T. Chien, H.B. Tsai, Catal. Today 174, 88 (2011), doi: 10.1016/j.cattod.2011.02.013
- [11] E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012), doi: 10.1016/j.seppur.2011.11.034
- [12] L. Xu, J. Xia, H. Xu, S. Yin, K. Wang, L. Huang, L. Wang, H. Li, J. Power Sources 245, 866 (2014), doi: 10.1016/j.jpowsour.2013.07.014
- [13] P. Xiong, H. Huang, X. Wang, J. Power Sources 245, 937 (2014), doi: 10.1016/j.jpowsour.2013.07.064
- [14] K. Mukherjee, D.C. Bharti, S.B. Majumder, Sens. Actuat. B 146, 91 (2010), doi: 10.1016/j.snb.2010.02.020
- [15] G. Wang, T. Liu, Y. Luo, Y. Zhao, Z. Ren, J. Bai, H. Wang, J. Alloys Comp. 509, 216 (2011), doi: 10.1016/j.jallcom.2011.03.151
- [16] X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano 5, 3333 (2011), doi: 10.1021/nn200493r
- [17] S. Guo, G. Zhang, Y. Guo, J. C. Yu, Carbon 60, 437 (2013), doi: 10.1016/j.carbon.2013.04.058
- [18] L. Tian, Q. Zhuang, J. Li, C. Wu, Y. Shi, S. Sun, Electrochim. Acta 65, 153 (2012), doi: 10.1016/j.electacta.2012.01.034
- [19] C. Wu, H. Zhang, Y. Wu, Q. Zhuang, L. Tian, X. Zhang, Electrochim. Acta 134, 18 (2014), doi: 10.1016/j.electacta.2014.03.068
- [20] W. Yang, Z. Gao, J. Wang, B. Wang, L. Liu, Solid State Sci. 20, 46 (2013), doi: 10.1016/j.solidstatesciences.2013.03.011
- [21] H. Li, Q. Zhao, X. Li, Z. Zhu, M. Tade, S. Liu, J. Nanopart. Res. 15, 1670 (2013), doi: 10.1007/s11051-013-1670-x
- [22] J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Zhang, H.H. Hng, Q. Yan, Nanoscale 3, 1084 (2011), doi: 10.1039/C0NR00744G
- [23] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938), doi: 10.1021/ja01269a023
- [24] L.L. Tian, Q.C. Zhuang, J. Li, C. Wu, Y.L. Shi, S.G. Sun, Electrochim. Acta 65, 153 (2012), doi: 10.1016/j.electacta.2012.01.034
- [25] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, SonBinh T. Nguyen, R.S. Ruoff, Nature 448, 457 (2007), doi: 10.1038/nature06016
- [26] M. Saraf, K. Natarajan, S.M. Mobin, RSC Adv. 7, 309 (2017), doi: 10.1039/C6RA24766K
- [27] L.J. van der Pauw, Philips Res. Repts. 13, 1 (1958)
- [28] Quantum Design Application Note 1076-304, Rev. A01, March 2007 http://qdusa.com/sitedocs/appNotes/ppms/1076-304.pdf
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n4p37kz