Journal
Article title
Title variants
Languages of publication
Abstracts
In this paper we investigate interband cascade type-II mid-wavelength infrared InAs/GaSb superlattice detector in temperature range from 200 K to 300 K. The paper is based on the theoretical calculation of dark current treated as a sum of two components: average bulk current and average leakage current, flowing through the device. The average leakage current results from a comparison of theoretically calculated bulk current and measured one. We show that it is possible to fit theoretical model to experimental data, assuming that transport in absorber is determined by the dynamics of the intrinsic carriers. Based on the fit we estimated carrier lifetime greater than 100 ns in temperature range 200-300 K.
Discipline
- 78.30.Fs: III-V and II-VI semiconductors
- 85.60.Bt: Optoelectronic device characterization, design, and modeling
- 85.60.Gz: Photodetectors (including infrared and CCD detectors)(for superconducting infrared detectors, see 85.25.Pb; for superconducting optical, x-ray and γ-ray detectors, see 85.25.Oj; see also 07.57.Kp in instruments)
- 73.61.Ey: III-V semiconductors
Journal
Year
Volume
Issue
Pages
1415-1419
Physical description
Dates
published
2017-10
received
2017-05-04
(unknown)
2017-08-29
Contributors
author
- Institute of Applied Physics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Applied Physics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Applied Physics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Applied Physics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
References
- [1] A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005), doi: 10.1088/0034-4885/68/10/R01
- [2] S. Mokkapati, C. Jagadish, Mater. Today 12, 22 (2009), doi: 10.1016/S1369-7021(09)70110-5
- [3] B.J. Sealy, J. IERE. 57, S2 (1987), doi: 10.1049/jiere.1987.0012
- [4] R.Q. Yang, Z. Tian, Z. Cai, J.F. Klem, M.B. Johnson, H.C. Liu, J. Appl. Phys. 107, 054514 (2010), doi: 10.1063/1.3327415
- [5] N. Gautam, S. Myers, A.V. Barve, B. Klein, E.P. Smith, D.R. Rhiger, L.R. Dawson, S. Krishna, Appl. Phys. Lett. 101, 021106 (2012), doi: 10.1063/1.4733660
- [6] P. Christol, C. Cervera, R. Chaghi, H. Aït-Kaci, J.B. Rodriguez, L. Konczewicz, S. Contreras, K. Jaworowicz, I. Ribet-Mohamed, Proc. SPIE 7608, 76081U (2010), doi: 10.1117/12.840853
- [7] W. Pusz, A. Kowalewski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, A. Rogalski, Opt. Eng. 53, 043107 (2014), doi: 10.1117/1.OE.53.4.043107
- [8] Y.P. Varshni, Physica 34, 149154 (1967), doi: 10.1016/0031-8914(67)90062-6
- [9] R.T. Hinkey, R.Q. Yang, J. Appl. Phys. 114, 104506 (2013), doi: 10.1063/1.4820394
- [10] C. Cervera, J.B. Rodriguez, J.P. Perez, H. Aït-Kaci, R. Chaghi, L. Konczewicz, S. Contreras, P. Christol, J. Appl. Phys. 106, 033709 (2009), doi: 10.1063/1.3191175
- [11] S. Safa, A. Asgari, J. Low Temp. Phys. 181, 223 (2015), doi: 10.1007/s10909-015-1349-z
- [12] J. Nguyen, D.Z. Ting, C.J. Hill, A. Soibel, S.A. Keo, S.D. Gunapala, Infr. Phys. Technol. 52, 317321 (2009), doi: 10.1016/j.infrared.2009.05.022
- [13] P. Martyniuk, A. Rogalski, Infrared Phys. Technol. 70, 125128 (2015), doi: 10.1016/j.infrared.2014.09.026
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n4p35kz