Journal
Article title
Title variants
Languages of publication
Abstracts
The structural and elastic properties of NbN₂ at high pressures were investigated through the first-principles calculation. Results indicate that NbN₂ is a potential hard material. NbN₂ meets mechanical stability criteria and possesses ductility within the pressure of 100 GPa. The elastic anisotropy under high pressure was achieved by the elastic anisotropy factors, which reduce with increasing pressure. Using the quasi-harmonic Debye model, we also investigated the thermodynamic properties of NbN₂.
Journal
Year
Volume
Issue
Pages
1363-1370
Physical description
Dates
published
2017-10
received
2017-03-31
(unknown)
2017-07-29
Contributors
author
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P.R. China
author
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P.R. China
- School of Micro-Electronics and Solid-State Electronics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
author
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P.R. China
author
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P.R. China
author
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P.R. China
References
- [1] A.Y. Liu, M.L. Cohen, Science 245, 841 (1989), doi: 10.1126/science.245.4920.841
- [2] J.L. He, L.C. Guo, D.L. Yu, R.P. Liu, Y.J. Tian, H. Tian, Appl. Phys. Lett. 85, 5571 (2004), doi: 10.1063/1.1832756
- [3] Y. Liang, C. Li, W. Guo, W. Zhang, Phys. Rev. B 79, 024111 (2009), doi: 10.1103/PhysRevB.79.024111
- [4] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, R.J. Hemley, Nat. Mater. 3, 294 (2004), doi: 10.1038/nmat1115
- [5] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson, Science 311, 1275 (2006), doi: 10.1126/science.1121813
- [6] A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 96, 155501 (2006), doi: 10.1103/PhysRevLett.96.155501
- [7] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Y. Meng, V.B. Prakapenka, J. Mater. Res. 23, 1 (2008), doi: 10.1557/JMR.2008.0027
- [8] A. Friedrich, B. Winkler, E.A. Juarez-Arellano, L. Bayarjargal, Materials 4, 1648 (2011), doi: 10.3390/ma4101648
- [9] X.J. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christensen, Y. Zhao, R.E. Cohen, H.K. Mao, R.J. Hemley, Proc. Natl. Acad. Sci. U.S.A. 102, 3198 (2005), doi: 10.1073/pnas.0500174102
- [10] C. Jiang, Z. Lin, Y. Zhao, Scr. Mater. 63, 532 (2010), doi: 10.1016/j.scriptamat.2010.05.022
- [11] Z.L. Zhao, K. Bao, F.B. Tian, X.L. Jin, D.F. Duan, D. Li, X.L. Huang, B.B. Liu, T. Cui, Phys. Chem. Chem. Phys. 17, 22837 (2015), doi: 10.1039/C5CP02381E
- [12] R. Hao, X. Zhang, J. Qin, S. Zhang, J. Ning, N. Sun, M. Ma, R. Liu, RSC Adv. 5, 36779 (2015), doi: 10.1039/c5ra15992j
- [13] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002), doi: 10.1088/0953-8984/14/11/301
- [14] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990), doi: 10.1103/PhysRevB.41.7892
- [15] D.R. Hamann, M. SchlÜter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979), doi: 10.1103/PhysRevLett.43.1494
- [16] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
- [17] S.H. Vosko, L. Wilk, M. Nussair, Can. J. Phys. 58, 1200 (1980), doi: 10.1139/p80-159
- [18] B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, J. Comp. Physiol. 131, 233 (1997), doi: 10.1006/jcph.1996.5612
- [19] K. Liu, S.M. Wang, X.L. Zhou, J. Chang, J. Appl. Phys. 114, 063512 (2013), doi: 10.1063/1.4817904
- [20] J. Chang, G.P. Zhao, X.L. Zhou, K. Liu, L.Y. Lu, J. Appl. Phys. 112, 083519 (2012), doi: 10.1063/1.4759279
- [21] B. Dong, X.L. Zhou, K. Liu, J. Chang, J. Appl. Phys. 116, 053511 (2014), doi: 10.1063/1.4891823
- [22] R. Hill, Proc. Phys. Soc. Lond. 65, 350 (1952), doi: 10.1088/0370-1298/65/5/307
- [23] Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007), doi: 10.1103/PhysRevB.76.054115
- [24] M.A. Blanco, E. Francisco, V. Luańa, Comput. Phys. Commun. 158, 57 (2004), doi: 10.1016/j.comphy.2003.12.001
- [25] A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York 1971, doi: 10.1107/S0567739473000859
- [26] M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, R. Franco, J. Mol. Struct. 368, 245 (1996), doi: 10.1016/S0166-1280(96)90571-0
- [27] M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, A.M. Pendás, Phys. Rev. B 66, 144112 (2002), doi: 10.1103/PhysRevB.66.144112
- [28] E. Francisco, M.A. Blanco, G. Sanjurjo, Phys. Rev. B 63, 094107 (2001), doi: 10.1103/PhysRevB.63.094107
- [29] B. Dong, K. Liu, X.L. Zhou, J. Tan, X.C. Mao, J. Chang, Phys. Status Solidi B 253, 527 (2016), doi: 10.1002/pssb.201552545
- [30] C. Stampfl, W. Mannstadt, R. Asahi, A.J. Freeman, Phys. Rev. B 63, 155106 (2001), doi: 10.1103/PhysRevB.63.155106
- [31] V.V. Brazhkin, A.G. Lyapin, R.J. Hemley, Philos. Mag. A 82, 231 (2002), doi: 10.1080/01418610208239596
- [32] R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308, 1268 (2005), doi: 10.1126/science.1109830
- [33] F.M. Gao, Phys. Rev. B 73, 132104 (2006), doi: 10.1103/PhysRevB.73.140102
- [34] X.P. Du, Y.X. Wang, V.C. Lob, Phys. Lett. A 374, 2569 (2010), doi: 10.1016/j.physleta.2010.04.020
- [35] H.Y. Gou, L. Hou, J.W. Zhang, G.F. Sun, L.H. Gao, F.M. Gao, Appl. Phys. Lett. 89, 141910 (2006), doi: 10.1063/1.2359434
- [36] S.F. Pugh, Philos. Mag. 45, 823 (1954), doi: 10.1080/14786440808520496
- [37] J.J. Lewandowski, W.H. Wang, A.L. Greer, Philos. Mag. Lett. 85, 77 (2005), doi: 10.1080/09500830500080474
- [38] O.L. Anderson, J. Phys. Chem Solids 24, 909 (1963), doi: 10.1016/0022-3697(63)90067-2
- [39] J. Jia, D. Zhou, J. Zhang, F. Zhang, Z. Lu, C. Pu, Comput. Mater. Sci. 95, 228 (2014), doi: 10.1016/j.commatsci.2014.07.044
- [40] Y.H. Duan, Y. Sun, M.J. Peng, S.G. Zhou, J. Alloys Comp. 595, 14 (2014), doi: 10.1016/j.jallcom.2014.01.108
- [41] S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008), doi: 10.1103/PhysRevLett.101.055504
- [42] P. Ravindran, L. Fast, P. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998), doi: 10.1063/1.368733
- [43] M. Rajagopalan, S.P. Kumar, R. Anuthama, Physica B 405, 1817 (2010), doi: 10.1016/j.physb.2010.01.053
- [44] G. Yi, X. Zhang, J. Qin, J. Ning, S. Zhang, M. Ma, R. Liu, J. Alloys Comp. 640, 455 (2015), doi: 10.1016/j.jallcom.2015.03.198
- [45] X.Y. Zhang, J.Q. Qin, J.L. Ning, X.W. Sun, X.T. Li, M.Z. Ma, R.P. Liu, J. Appl. Phys. 114, 183517 (2013), doi: 10.1063/1.4829926
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n4p27kz