PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 4 | 1329-1332
Article title

Some Details of Statistical Mechanics of Many-Body Systems in the Presence of a Measurable Minimal Length

Content
Title variants
Languages of publication
EN
Abstracts
EN
Different approaches to quantum gravity proposal such as string theory, doubly special relativity, and also black holes physics, all commonly address the existence of a minimal measurable length of the order of the Planck length. One way to apply the minimal length is changing the Heisenberg algebra in the phase space which is known as the generalized uncertainty principle. It is essential to apply this feature on the statistical mechanics of many body systems in the presence of a measurable minimal length scale in order to see the roles of this natural cutoff on physical phenomena. In this paper, some details of statistical mechanics of many body systems that have not been studied carefully in literature are studied in the presence of minimal length scale. The issues such as isomerization, the Liouville theorem, virial theorem and equipartition theorem are studied in this setup with details and the results are explained thoroughly.
Publisher

Year
Volume
132
Issue
4
Pages
1329-1332
Physical description
Dates
published
2017-10
received
2016-11-05
(unknown)
2017-07-25
Contributors
author
  • Department of Physics, Islamic Azad University, Sari Branch, Sari, Iran
author
  • Department of Physics, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
  • Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM), P.O. Box 55134-441, Maragha, Iran
References
  • [1] G. Veneziano, Europhys. Lett. 199, 2 (1986), doi: 10.1209/0295-5075/2/3/006
  • [2] E. Witten, Phys. Today 24, 49 (1996), doi: 10.1063/1.881493
  • [3] D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216, 41 (1989), doi: 10.1016/0370-2693(89)91366-x
  • [4] D. Amati, M. Ciafaloni, G. Veneziano, Nucl. Phys. B 347, 550 (1990), doi: 10.1016/0550-3213(90)90375-n
  • [5] D. Amati, M. Ciafaloni, G. Veneziano, Nucl. Phys. B 403, 707 (1993), doi: 10.1016/0550-3213(93)90367-x
  • [6] K. Konishi, G. Paffuti, P. Provero, Phys. Lett. B 234, 276 (1990), doi: 10.1016/0370-2693(90)91927-4
  • [7] L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995), doi: 10.1142/s0217751x95000085
  • [8] M. Maggiore, Phys. Lett. B 319, 83 (1993), doi: 10.1016/0370-2693(93)90785-g
  • [9] M. Maggiore, Phys. Lett. B 304, 65 (1993), doi: 10.1016/0370-2693(93)91401-8
  • [10] F. Scardigli, Phys. Lett. B 452, 39 (1999), doi: 10.1016/s0370-2693(99)00167-7
  • [11] A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995), doi: 10.1103/physrevd.52.1108
  • [11a] A. Kempf, G. Mangano, Phys. Rev. D 55, 7909 (1997), doi: 10.1103/physrevd.55.7909
  • [11b] K. Nozari, A. Etemadi, Phys. Rev. D 85, 104029 (2012), doi: 10.1103/physrevd.85.104029
  • [11c] S. Ghosh, P. Roy, Phys. Lett. B 711, 423 (2012), doi: 10.1016/j.physletb.2012.04.033
  • [12] M. Maggiore, Phys. Rev. D 49, 5182 (1994), doi: 10.1103/physrevd.49.5182
  • [12a] A. Kempf, J. Math. Phys. 35, 4483 (1994), doi: 10.1063/1.530798
  • [12b] R.J. Adler, D.I. Santiago, Mod. Phys. Lett. A 14, 1371 (1999), doi: 10.1142/s0217732399001462
  • [12c] A. Kempf, Phys. Rev. D 63, 083514 (2001), doi: 10.1103/physrevd.63.083514
  • [12d] A. Kempf, J.C. Niemeyer, Phys. Rev. D 64, 103501 (2001), doi: 10.1103/physrevd.64.103501
  • [13] A. Alizadeh, J. Theor. Phys. 4, 14 (2015)
  • [14] K. Nozari, B. Fazlpour, Gen. Rel. Grav. 38, 1661 (2006), doi: 10.1007/s10714-006-0331-0
  • [14a] K. Nozari, S.H. Mehdipour, Chaos Solitons Fractals 32, 1637 (2007), doi: 10.1016/j.chaos.2006.09.019
  • [15] T. Fityo, Phys. Lett. A 372, 5872 (2008), doi: 10.1016/j.physleta.2008.07.047
  • [16] A.E. Shalyt-Margolin, A.Ya. Tregubovich, arXiv: gr-qc/0207068 http://arXiv.org/abs/gr-qc/0207068
  • [16a] A.E. Shalyt-Margolin, J.G. Suarez, Int. J. Mod. Phys. D 12, 1265 (2003), doi: 10.1142/s0218271803003700
  • [17] A.E. Shalyt-Margolin, A.Ya. Tregubovich, arXiv: gr-qc/0204078 http://arXiv.org/abs/gr-qc/0204078
  • [18] D. Mania, M. Maziashvili, Phys. Lett. B 705, 521 (2011), doi: 10.1016/j.physletb.2011.10.049
  • [19] R.K. Pathria, P.D. Beale, Statistical Mechanics, Elsevier, 2011, doi: 10.1016/B978-0-12-382188-1.00022-0
  • [20] X. Zhang, L. Shao, B.Q Ma, Astropart. Phys. 34, 840 (2011), doi: 10.1016/j.astropartphys.2011.03.001
  • [20a] N. Chandra, S. Chatterjee, Phys. Rev. D 85, 045012 (2011), doi: 10.1103/physrevd.85.045012
  • [21] A. Lavagno, A.M. Scarfone, P.N. Swamy, Rep. Math. Phys. 55, 423 (2005), doi: 10.1016/s0034-4877(05)80056-4
  • [21a] A. Lavagno, P.N. Swamy, Found. Phys. 40, 814 (2010), doi: 10.1007/s10701-009-9363-0
  • [21b] R.C. Venkatesan, A. Plastino, Physica A 389, 1159 (2010), doi: 10.1016/j.physa.2009.11.033
  • [21c] F.A. Brito, A.A. Marinho, Physica A 390, 2497 (2011), doi: 10.1016/j.physa.2011.03.003
  • [21d] A.A. Marinho, F.A. Brito, C. Chesman, Physica A 391, 3424 (2012), doi: 10.1016/j.physa.2012.02.012
  • [22] L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002)), doi: 10.1103/physrevd.65.125027
  • [22a] K. Gemba, Z.T. Hlousek, Z. Papp, arXiv: 0712.2078 http://arXiv.org/abs/0712.2078
  • [22b] Z. Lewis, T. Takeuchi, Phys. Rev. D 84, 105029 (2011), doi: 10.1103/physrevd.84.105029
  • [22] Z. Lewis, T. Takeuchi, Phys. Rev. D 84, 105029 , doi: 10.1103/physrevd.84.105029
  • [23] P. Pedram, Phys. Rev. D 85, 024016 (2012), doi: 10.1103/physrevd.85.024016
  • [24] P. Pedram, Int. J. Theor. Phys. 51, 1901 (2012), doi: 10.1007/s10773-011-1066-6
  • [25] B. Vakili, M.A. Gorji, J. Statist. Mech. Theor. Exp. 2012, 10013 (2012), doi: 10.1088/1742-5468/2012/10/p10013
  • [25a] P. Pedram, K. Nozari, S.H. Taheri, J. High Energy Phys. 1103, 093 (2011), doi: 10.1007/jhep03(2011)093
  • [26] C. Quesne, V.M. Tkachuk, Phys. Rev. A 81, 012106 (2010), doi: 10.1103/physreva.81.012106
  • [27] C. Quesne, V.M. Tkachuk, SIGMA 3, 016 (2007), doi: 10.1103/physreva.81.012106
  • [28] K. Nozari, S.D. Sadatian, Gen. Rel. Gravit. 40, 23 (2008), doi: 10.1007/s10714-007-0512-5
  • [29] J. Alfaro, G. Palma, Phys. Rev. D 67, 083003 (2003), doi: 10.1103/physrevd.67.083003
  • [30] N.E. Mavromatos, Int. J. Mod. Phys. A 25, 5409 (2010) and references therein, doi: 10.1142/s0217751x10050792
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n4p21kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.