Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 4 | 1320-1324
Article title

Electronic Structure and Magnetic Exchange Interaction in Fe₂NiAs Compound

Title variants
Languages of publication
Using the spin-polarized relativistic Korringa-Kohn-Rostoker method, we study the electronic and magnetic properties of Fe₂NiAs compound with the Hg₂CuTi structure. Electronic calculations reveal the d-d orbital hybridization taking an important role in the compound. The calculated magnetic moments, which contain the spin and orbital moments, are primarily carried by Fe atoms located in A and B sites. The orbital moment of Fe₂NiAs system is rather small due to the cause of orbital quenching, implying a weak spin-orbit coupling. Simultaneously, we also study the influence of lattice constant on the magnetic moment, it is found that both spin and orbital moments are sensitive to the changes of lattice constants, i.e., the moments become larger as the expansion of lattice constant, indicating the enhancement of spin-orbit coupling effect. In addition, we investigate the magnetic interactions between the constituents to obtain the Heisenberg exchange coupling parameters. It is noted that the interactions are dominated by a strong exchange between Fe atoms. Finally, we acquire the Curie temperatures of Fe₂NiAs compound under different lattice constants by using mean field approximation.
  • The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
  • Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
  • The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
  • The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
  • Department of Physics, Nanjing Normal University, Nanjing 210023, P.R. China
  • [1] T. Graf, J. Winterlik, L. Müchler, G.H. Fecher, C. Felser, S.S.P. Parkin, in: Handbook of Magnetic Materials, Vol. 21, Ed. K.H.J. Buschow, Elsevier, Amsterdam 2013, p. 1
  • [2] G.E. Bacon, J.S. Plant, J. Phys. F 1, 524 (1971)
  • [3] T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011), doi: 10.1016/j.progsolidstchem.2011.02.001
  • [4] F. Nejadsattari, Z.M. Stadnik, J. Przewoźnik, K.H.J. Buschow, Physica B 477, 113 (2015), doi: 10.1016/j.physb.2015.08.027
  • [5] Y.J. Zhang, W.H. Wang, H.G. Zhang, E.K. Liu, R.S. Ma, G.H. Wu, Physica B 420, 86 (2013), doi: 10.1016/j.physb.2013.04.005
  • [6] D.C. Gupta, I.H. Bhat, Mater. Chem. Phys. 146, 303 (2014), doi: 10.1016/j.matchemphys.2014.03.027
  • [7] T. Gasi, V. Ksenofontov, J. Kiss, S. Chadov, A.K. Nayak, M. Nicklas, J. Winterlik, M. Schwall, P. Klaer, P. Adler, C. Felser, Phys. Rev. B 87, 064411 (2013), doi: 10.1103/PhysRevB.87.064411
  • [8] Ming Yin, P. Nash, Song Chen, Intermetallics 57, 34 (2015), doi: 10.1016/j.intermet.2014.10.001
  • [9] H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 74, 096501 (2011)
  • [10] S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980), doi: 10.1139/p80-159
  • [11] A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987), doi: 10.1016/0304-8853(87)90721-9
  • [12] E. Şaşioǧlu, L.M. Sandratskii, P. Bruno, J. Phys. Condens. Matter 17, 995 (2005)
  • [13] X.P. Wei, Y.D. Chu, X.W. Sun, T. Sun, P. Guo, Physica B 463, 103 (2015), doi: 10.1016/j.physb.2015.02.006
  • [14] H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2007)
  • [15] H.Z. Luo, Z.Y. Zhu, L. Ma, S.F. Xu, X.X. Zhu, C.B. Jiang, H.B. Xu, G.H. Wu, J. Phys. D Appl. Phys. 41, 055010 (2008)
  • [16] F.D. Murnaghan, Finite Deformation of an Elastic Solid, Dover, New York 1967
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.