PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 4 | 1301-1305
Article title

A Temperature Error Correction Method for a Thermometer Screen

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Due to solar radiation exposure, air flowing inside a thermometer screen may produce a measurement error of 0.8°C or higher. To improve the air temperature observation accuracy, a temperature error correction method is proposed. The correction method is based on a computational fluid dynamics method and a genetic algorithm method. The computational fluid dynamics method is implemented to analyze and calculate the temperature errors of a screen under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the computational fluid dynamics results using the genetic algorithm method. To verify the performance of the correction equation the screen and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean temperature error given by measurements is 0.77°C, and the mean temperature error given by correction equation is 0.79°C. This correction equation allows the temperature error to be reduced by approximately 97.5%.
Publisher

Year
Volume
132
Issue
4
Pages
1301-1305
Physical description
Dates
published
2017-10
received
2016-09-23
Contributors
author
  • Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing 210044, China and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044, China
author
  • Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing 210044, China and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044, China
References
  • [1] P.P. Harris, C. Huntingford, P.M. Cox, Philos. Trans. R. Soc. B 363, 1753 (2008), doi: 10.1098/rstb.2007.0037
  • [2] J.R. Toggweiler, R. Joellen, Nature 451, 286 (2008), doi: 10.1038/nature06590
  • [3] R.A. Kerr, Science 334, 173 (2011), doi: 10.1126/science.334.6053.173
  • [4] Z.A. Holden, J.T. Abatzoglou, C.H. Luce, L.S. Baggett, Agric. For. Meteorol. 151, 1066 (2011), doi: 10.1016/j.agrformet.2011.03.011
  • [5] J. Balanyá, J.M. Oller, R.B. Huey, G.W. Gilchrist, L. Serra, Science 313, 1773 (2006), doi: 10.1126/science.1131002
  • [6] A.P. Schurer, G.C. Hegerl, S.P. Obrochta, Geophys. Res. Lett. 42, 5974 (2015), doi: 10.1002/2015GL064458
  • [7] A. Haines, A.J. Mcmichael, S. Kovats, M. Saunders, BMJ Clin. Res. 316, 1530 (1998), doi: 10.1136/bmj.316.7143.1530
  • [8] M.E. Dillon, W. George, R.B. Huey, Nature 467, 704 (2010), doi: 10.1038/nature09407
  • [9] H. Preston-Thomas, Metrologia 27, 3 (1990), doi: 10.1007/BF02841688
  • [10] R.G. Harrison, C.R. Wood, Q.J. Roy. Meteor. Soc. 138, 1114 (2012), doi: 10.1002/qj.985
  • [11] P.P. Harris, C. Huntingford, P.M. Cox, Philos. Trans. R. Soc. B 363, 1753 (2008), doi: 10.1098/rstb.2007.0037
  • [12] E. Erell, V. Leal, E. Maldonado, Bound-Layer. Meteor. 114, 205 (2005), doi: 10.1007/s10546-004-8946-8
  • [13] X. Lin, K.G. Hubbard, G.E. Meyer, J. Atmos. Oceanic Technol. 18, 329 (2010), doi: 10.1175/1520-0426(2001)018<0329:ACOCUT>2.0.CO;2
  • [14] S.J. Richardson, F.V. Brock, S.R. Semmer, C. Jirak, J. Atmos. Oceanic Technol. 16, 1862 (1999), doi: 10.1175/1520-0426(1999)016<1862:MEAWMR>2.0.CO;2
  • [15] M. Fuchs, C.B. Tanner, J. Appl. Meteor. 4, 544 (1965), doi: 10.1175/1520-0450(1965)004<0544:RSFATT>2.0.CO;2
  • [16] S.P. Anderson, M.F. Baumgartner, J. Atmos. Oceanic Technol. 15, 157 (1998), doi: 10.1175/1520-0426(1998)015<0157:RHEINV>2.0.CO;2
  • [17] K.G. Hubbard, X. Lin, E.A. Walter-Shea, J. Atmos. Oceanic Technol. 18, 851 (2001), doi: 10.1175/1520-0426(2001)018<0851:TEOTAM>2.0.CO;2
  • [18] M. Mauder, R.L. Desjardins, Z. Gao, R.V. Haarlem, J. Atmos. Oceanic Technol. 25, 2145 (2008), doi: 10.1175/2008JTECHA1046.1
  • [19] K.G. Hubbard, X. Lin, Geophys. Res. Lett. 29, 67-1 (2002), doi: 10.1029/2001GL013191
  • [20] F.V. Brock, K.C. Crawford, R.L. Elliott, G.W. Cuperus, S.J. Stadler, H.L. Johnson, M.D. Eilts, J. Atmos. Oceanic Technol. 12, 5 (1995), doi: 10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2
  • [21] G. Lopardo, F. Bertiglia, S. Curci, G. Roggero, A. Merlone, Int. J. Climatol. 34, 1297 (2014), doi: 10.1002/joc.3765
  • [22] C. Georges, G. Kaser, J. Geophys. Res. 107, ACL 15-1 (2002), doi: 10.1029/2002JD002503
  • [23] R. Nakamura, L. Mahrt, J. Atmos. Oceanic Technol. 22, 1046 (2005), doi: 10.1175/JTECH1762.1
  • [24] Z.A. Holden, A.E. Klene, R.F. Keefe, G.G. Moisen, Agric. For. Meteorol. 180, 281 (2013), doi: 10.1016/j.agrformet.2013.06.011
  • [25] R. Kurzeja, Bound-Layer. Meteor. 134, 181 (2010), doi: 10.1007/s10546-009-9430-2
  • [26] L.B. MacHattie, Ecology 46, 533 (1965), doi: 10.2307/1934888
  • [27] M.C. Perry, M.J. Prior, D.E. Parker, Int. J. Climatol. 27, 267 (2007), doi: 10.1002/joc.1381
  • [28] C.K. Thomas, A.R. Smoot, J. Atmos. Oceanic Technol. 30, 526 (2013), doi: 10.1175/JTECH-D-12-00044.1
  • [29] A. Barnett, D.B. Hatton, D.W. Jones, WMO Report No. 66 (1998) http://library.wmo.int/pmb_ged/wmo-td_871.pdf
  • [30] A.T. Inan, T. Sisman, Acta. Phys. Pol. A 127, 1145 (2015), doi: 10.12693/APhysPolA.127.1145
  • [31] B. Önen, Y. Yıldıran, E. Avcu, A. Çınar, Acta. Phys. Pol. A 127, 1225 (2015), doi: 10.12693/APhysPolA.127.1225
  • [32] S.J. Richardson, J. Atmos. Oceanic Technol. 12, 951 (1995), doi: 10.1175/1520-0426(1995)012<0951:ATARHC>2.0.CO;2
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n4p16kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.