Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 4 | 1261-1264

Article title

Luminescence Properties of CaAl₂O₄:Eu³⁺, Gd³⁺ Phosphors Synthesized by Combustion Synthesis Method

Content

Title variants

Languages of publication

EN

Abstracts

EN
CaAl₂O₄:Eu³⁺ (1 mol.%) co-doped with varying concentration of Gd³⁺ (1, 2, 5, and 10 mol.%) were prepared by combustion synthesis method at 600°C and further annealed at 1000°C. All the compositions were investigated for their structural and photoluminescence properties. It was observed that both states of europium i.e. Eu³⁺ and Eu²⁺ were present and ratio of these states changes on heating at 1000°C. The materials synthesized at 600°C showed high intense peak around 440 nm due to presence of Eu²⁺ and less intense peaks in the red region which were due to presence of Eu³⁺. On annealing the compounds at 1000°C, intensity of peak around 440 nm decreases and intensity of peaks in the red region increases significantly. The ⁵D₀ → ⁷F₃ transition due to Eu³⁺ at 657 nm appears as the highest intensity peak. All co-doped samples annealed at 1000°C showed the higher intensity than the mono doped sample which is due to energy transfer from the Gd³⁺ to Eu³⁺. The second rare-earth ion (Gd³⁺) acts as sensitizer and enhances the photoluminescence intensity. The X-ray diffraction spectra reveal the monoclinic phase of CaAl₂O₄ in all the samples which showed that Eu³⁺ and Gd³⁺ do not change the crystalline structure of calcium aluminate.

Year

Volume

132

Issue

4

Pages

1261-1264

Physical description

Dates

published
2017-10
received
2016-08-22
(unknown)
2017-10-09

Contributors

author
  • Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
author
  • Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
author
  • Institut de Disseny per la Fabricació Automatitzada, Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
author
  • Institut de Disseny per la Fabricació Automatitzada, Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
author
  • Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India

References

  • [1] L. Gan, Z.Y. Mao, F.F. Xu, Y.C. Zhu, X.J. Liu, Ceram. Int. 40, 5067 (2014), doi: 10.1016/j.ceramint.2013.09.051
  • [2] J.T. Ingle, R.P. Sonekar, S.K. Omanwar, Y. Wang, L. Zhao, J. Alloys Comp. 608, 235 (2014), doi: 10.1016/j.jallcom.2014.04.079
  • [3] O. Annalakshmi, M.T. Jose, B. Venkatraman, G. Amarendra, Mater. Res. Bull. 50, 494 (2014), doi: 10.1016/j.materresbull.2013.11.046
  • [4] Y. Kaur, V. Parganiha, D. Dubey, D. Singh, Superlatt. Microstruct. 73, 38 (2014), doi: 10.1016/j.spmi.2014.05.009
  • [5] E. Shafia, M. Bodaghi, S. Esposito, A. Aghaei, Ceram. Int. 40, 4697 (2014), doi: 10.1016/j.ceramint.2013.09.011
  • [6] B. Marí, K.C. Singh, M. Sahal, S.P. Khatkar, V.B. Taxak, M. Kumar, J. Lumin. 131, 587 (2011), doi: 10.1016/j.jlumin.2010.10.035
  • [7] B. Marí, K.C. Singh, M. Sahal, S.P. Khatkar, V.B. Taxak, M. Kumar, J. Lumin. 130, 2128 (2010), doi: 10.1016/j.jlumin.2010.06.005
  • [8] P. Thiyagarajan, M. Kottaisamy, K. Sethupathi, M.S.R. Rao, Displays 30, 202 (2009), doi: 10.1016/j.displa.2009.08.001
  • [9] J.T. Ingle, R.P. Sonekar, S.K. Omanwar, Y. Wang, L. Zhao, Opt. Mater. 36, 1299 (2014), doi: 10.1016/j.optmat.2014.03.015
  • [10] D.S. Zang, J.H. Song, D.H. Park, Y.C. Kim, D.H. Yoon, J. Lumin. 129, 1088 (2009), doi: 10.1016/j.jlumin.2009.05.004
  • [11] A.A. Reddy, S.S. Babu, G.V. Prakash, Opt. Commun. 285, 5364 (2012), doi: 10.1016/j.optcom.2012.08.031
  • [12] H. Yoshida, N. Sato, J. Phys. Chem. C 116, 10333 (2012), doi: 10.1021/jp300126r
  • [13] H. Lian, Z. Hou, M. Shang, D. Geng, Y. Zhang, J. Lin, Energy 57, 270 (2013), doi: 10.1016/j.energy.2013.05.019
  • [14] U. Rambabu, S.D. Han, Ceram. Int. 39, 1603 (2013), doi: 10.1016/j.ceramint.2012.08.002
  • [15] T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Phys. Chem. B 110, 4589 (2006), doi: 10.1021/jp057185m
  • [16] K. Van den Eeckhout, P.F. Smet, D. Poelman, Materials 3, 2536 (2010), doi: 10.3390/ma3042536
  • [17] T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Alloys Comp. 341, 76 (2002), doi: 10.1016/S0925-8388(02)00068-3
  • [18] P. Docampo, T. Bein, Acc. Chem. Res. 49, 339 (2016), doi: 10.1021/acs.accounts.5b00465
  • [19] H. Ryu, K.S. Bartwal, J. Phys. D Appl. Phys. 41, 235404 (2008), doi: 10.1088/0022-3727/41/23/235404
  • [20] Phosphorescent Phosphor US patent 5424006. 1995
  • [21] R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, R.P.S. Chakradhar, N.S. Murthy, R. Sivaramakrishna, C. Shivakumara, J.L. Rao, T. Thomas, J. Alloys Comp. 589, 596 (2014), doi: 10.1016/j.jallcom.2013.11.221
  • [22] R. Chen, Y. Wang, Y. Hu, Z. Hu, C. Liu, J. Lumin. 128, 1180 (2008), doi: 10.1016/j.jlumin.2007.11.094
  • [23] V. Singh, J.J. Zhu, M.K. Bhide, V. Natarajan, Opt. Mater. 30, 446 (2007), doi: 10.1016/j.optmat.2006.11.074
  • [24] S. Janakova, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, P. Boutinaud, J. Phys. Chem. Solids 68, 1147 (2007), doi: 10.1016/j.jpcs.2006.12.034
  • [25] Y. Wu, Z. Sun, K. Ruan, Y. Xu, H. Zhang, J. Lumin. 155, 269 (2014), doi: 10.1016/j.jlumin.2014.06.051
  • [26] B. Marí, K.C. Singh, P.C. Coca, I. Singh, D. Singh, S. Chand, Displays 34, 346 (2013), doi: 10.1016/j.displa.2013.07.003
  • [27] B. Marí, K.C. Singh, M. Moya, I. Singh, H. Om, S. Chand, Opt. Mater. 34, 1267 (2012), doi: 10.1016/j.optmat.2012.01.032
  • [28] X.F. Wang, G.H. Peng, N. Li, Z.H. Liang, X. Wang, J.L. Wu, J. Alloys Comp. 599, 102 (2014), doi: 10.1016/j.jallcom.2014.02.091
  • [29] X. Ju, X. Li, W. Li, W. Yang, C. Tao, Mater. Lett. 65, 2642 (2011), doi: 10.1016/j.matlet.2011.05.105
  • [30] Y. Sun, G. Qiu, X. Li, S. Zhang, C. Yan, X. Zhang, Rare Metals 25, 615 (2006)
  • [31] A. Birkel, N.A. DeCino, N.C. George, K.A. Hazelton, B.C. Hong, R. Seshadri, Solid State Sci. 19, 51 (2013), doi: 10.1016/j.solidstatesciences.2013.02.003
  • [32] S. Ekambaram, K.C. Patil, J. Alloys Comp. 248, 7 (1997), doi: 10.1016/S0925-8388(96)02622-9
  • [33] Z. Pei, Q. Su, J. Zhang, J. Alloys Comp. 198, 51 (1993), doi: 10.1016/0925-8388(93)90143-B
  • [34] M. Peng, Z. Pei, G. Hong, Q. Su, Chem. Phys. Lett. 371, 1 (2003), doi: 10.1016/S0009-2614(03)00044-7
  • [35] L.H. Bin, H.T. Dou, W.S. Bin, Z.Q. Hua, P.Z. Wu, S. Qiang, Chin. J. Chem. 18, 294 (2000), doi: 10.1002/cjoc.20000180307
  • [36] I. Tale, P. Kulis, V. Kronghauz, J. Lumin. 20, 343 (1979), doi: 10.1016/0022-2313(79)90003-6
  • [37] K.B. Kim, K.W. Koo, T.Y. Cho, H.G. Chun, Mater. Chem. Phys. 80, 682 (2003), doi: 10.1016/S0254-0584(03)00110-X
  • [38] US Patent 6827877 B2
  • [39] J. Zhong, H. Liang, Q. Sou, J. Zhou, Y. Huang, Z. Gao, Y. Tao, J. Wang, Appl. Phys. B 98, 149 (2010), doi: 10.1007/s00340-009-3674-x
  • [40] V. Singh, G. Sivaramaiah, J.L. Rao, S.H. Kim, J. Lumin. 143, 162 (2013), doi: 10.1016/j.jlumin.2013.03.054

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n4p09kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.