Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 4 | 1230-1233

Article title

Analytical Threshold Voltage Model Considering Quantum Size Effects for Nanocrystalline Silicon Thin Film Transistors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper presents an analytical model calculating the threshold voltage in nanocrystalline silicon (nc-Si) thin film transistors by considering a granular morphology of silicon nanocrystallites forming the channel and using the two-dimensional the Poisson equation. The numerical calculations demonstrate that, according to the quantum size effects on both dielectric constant and band gap, the threshold voltage values are strongly related to the silicon crystallites structure. To justify the validity of our model suitable for implementation in circuit simulators such as SPICE, the simulation results obtained are compared with the available research data and they shows a satisfactory match, thus, demonstrating the validity of our model.

Keywords

Contributors

author
  • Department of Electronics, Jijel University, B.P. 98, Ouled Aissa, Jijel 18000, Algeria
  • LEM Laboratory, Jijel University, B.P. 98, Ouled Aissa, Jijel 18000, Algeria
author
  • Department of Electronics, Jijel University, B.P. 98, Ouled Aissa, Jijel 18000, Algeria
  • LEM Laboratory, Jijel University, B.P. 98, Ouled Aissa, Jijel 18000, Algeria
author
  • Department of Electronics, Jijel University, B.P. 98, Ouled Aissa, Jijel 18000, Algeria
  • LEM Laboratory, Jijel University, B.P. 98, Ouled Aissa, Jijel 18000, Algeria

References

  • [1] P.T. Chow, M. Wong, IEEE Trans. Electron. Dev. 56, 1493 (2009), doi: 10.1109/TED.2009.2021440
  • [2] T.A. Anutgan, M. Anutgan, I. Atilgan, B. Katircioglu, Thin Solid Films 519, 3914 (2011), doi: 10.1016/j.tsf.2011.01.284
  • [3] H. Bouridah, H. Haoues, M.R. Beghoul, F. Mansour, R. Remmouche, P. Temple-Boyer, Acta. Phys. Pol. A 121, 175 (2012), doi: 10.12693/APhysPolA.121.175
  • [4] A.T. Hatzopoulos, I. Pappas, D.H. Tassis, N. Arpatzanis, C.A. Dimitriadis, Appl. Phys. Lett. 89, 193504 (2006), doi: 10.1063/1.2374851
  • [5] P. Roca i Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon, I. French, J. Appl. Phys. 86, 7079 (1999), doi: 10.1063/1.371795
  • [6] B. Rech, T. Roschek, T. Repmann, J. Muller, R. Schmitz, W. Appenzeller, Thin Solid Films 427, 157 (2003), doi: 10.1016/S0040-6090(02)01210-5
  • [7] R. Remmouche, N. Boutaoui, H. Bouridah, Acta. Phys. Pol. A 121, 190 (2012), doi: 10.12693/APhysPolA.121.190
  • [8] P. Sharma, N. Gupta, J. Electron. Dev. 19, 1608 (2014)
  • [9] D. Dosev, T. Ytterdal, J. Pallares, L.F. Marsal, B. Iníguez, IEEE Trans. Electron. Dev. 49, 1979 (2002), doi: 10.1109/TED.2002.804719
  • [10] S. Qureshi, M.J. Siddiqui, Semicond. Sci. Technol. 17, 526 (2002), doi: 10.1088/0268-1242/17/6/305
  • [11] N. Gupta, Phys. Scr. 76, 628 (2007), doi: 10.1088/0031-8949/76/6/006
  • [12] W. Wu, R. Yao, X. Zheng, Solid-State Electron. 53, 607 (2009), doi: 10.1016/j.sse.2009.04.001
  • [13] A. Ortiz-Conde, F.J. Garcia-Sanchez, J. Muci, A.T. Barrios, J.J. Liou, C.S. Ho, Microelectron. Reliab. 53, 90 (2013), doi: 10.1016/j.microrel.2012.09.015
  • [14] L.F. Mao, Microelectron. Reliab. 53, 1886 (2013), doi: 10.1016/j.microrel.2013.05.012
  • [15] R. Fates, H. Bouridah, R. Remmouche, Mater. Sci. Semicond. Process. 24, 278 (2014), doi: 10.1016/j.mssp.2014.03.025
  • [16] L.W. Wang, A. Zunger, Phys. Rev. Lett. 73, 1039 (1994), doi: 10.1103/PhysRevLett.73.1039
  • [17] C.H. Cheng, P.S. Wang, C. Wu, G.R. Lin, J. Display Technol. 9, 536 (2013), doi: 10.1109/JDT.2013.2241015

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n4p03kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.