PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 786-788
Article title

Bioactivity Properties and Characterization of Commercial Synthetic Hydroxyapatite - 5 wt.% Niobium (V) Oxide - 5 wt.% Magnesium Oxide Composite

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Hydroxyapatite is widely used for bone grafts due to its chemical and structural similarities to the mineral phase of hard tissues and due to its bioactivity and biocompatibility. However, hydroxyapatite has poor mechanical properties due to its brittleness. To improve mechanical properties of hydroxyapatite-ceramics, ceramic oxides, whiskers or fibers have been suggested. In this study, commercial synthetic hydroxyapatite composite reinforced with 5 wt.% Nb₂O₅ and 5 wt.% MgO was characterized. Microstructural properties of all samples sintered at different temperatures were characterized using scanning electron microscopy technique. Phase analysis was carried out using X-ray diffraction technique. Mechanical properties were measured by compression and hardness tests. The bioactivity property was determined by in vitro bioactivity test. The best obtained values of density, compression strength and Vickers Microhardness were 3.01 g/cm³, 96 MPa and 393 HV, for composite sintered at 1300°C for 4 hours. Bioactivity results for composite, sintered at 1300°C, show that apatite formation has started after two weeks in a simulated body fluid. At the end of the fourth week, the dense apatite layer and clusters were observed on the surface of the composite.
Keywords
EN
Publisher

Year
Volume
132
Issue
3
Pages
786-788
Physical description
Dates
published
2017-09
Contributors
author
  • Ceramic, Glass and Tile Department, Vocational School of Degirmendere Ali Ozbay, Kocaeli University, Kocaeli, Turkey
References
  • [1] N. Demirkol, F.N. Oktar, E.S. Kayali, Acta Phys. Pol. A 121, 274 (2012), doi: 10.12693/APhysPolA.121.274
  • [2] N. Demirkol, A.Y. Oral, F.N. Oktar, E.S. Kayali, Key Engin. Mater. 587, 33 (2014)
  • [3] S. Ozturk, M. Yetmez, Adv. Mater. Sci. Engin. 2016, 6987218 (2016), doi: 10.1155/2016/6987218
  • [4] F. Heidari, M. Razavi, M. Ghaedi, M. Forooghi, M. Tahriri, L. Tayebi, J. Alloy. Compd. 693, 1150 (2017), doi: 10.1016/j.jallcom.2016.10.081
  • [5] R. Chakraborty, D. RoyChowdhury, Chem. Eng. J. 215-216, 491 (2013), doi: 10.1016/j.cej.2012.11.064
  • [6] V.S. Gshalaev, A.C. Demirchan, Hydroxyapatite Synthesis, Properties and Applications, Nova Science Publisher, 2012
  • [7] K. Lin, M. Zhang, W. Zhai, H. Qu, J. Chang, J. Am. Ceram. Soc. 94, 206 (2011)
  • [8] M. Tamai, K. Isama, R. Nakaoka, T. Tsuchiyo, J. Artif. Organs 10, 22 (2007)
  • [9] M.H. Fathi, M. Salehi, V. Martazavi, S.B. Mousavi, A. Porsapour, Surf. Eng. 22, 353 (2006)
  • [10] N. Demirkol, F.N. Oktar, E.S. Kayali, Acta Phys. Pol. A 121, 274 (2012), doi: 10.12693/APhysPolA.121.274
  • [11] H.-S. Ryu, K.S. Hong, J.-K. Lee, D.J. Kim, J.-H. Lee, B.-S. Chang, D.-H. Lee, C.-K. Lee, S.-S. Chung, Biomater. 25, 393 (2004), doi: 10.1016/S0142-9612(03)00538-6
  • [12] N. Demirkol, O. Meydanoglu, H. Gokce, F.N. Oktar, E.S. Kayali, Key Engin. Mater. 493-494, 588 (2012)
  • [13] R. del Compo, B. Savoini, A. Munoz, M.A. Monge, R. Pareja, J. Mechan. Behav. Biomed. Mater. 69, 135 (2017), doi: 10.1016/j.jmbbm.2016.12.023
  • [14] N. Demirkol, Koyun Hidroksiapatit Esaslı Kompozitlerin Üretimi ve Karakterizasyonu, Yalın Yayıncılık, 2016, s. 80
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n3p103kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.