PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 753-755
Article title

Sentiment Analysis: an Application to Anadolu University

Content
Title variants
Languages of publication
EN
Abstracts
EN
Social media is a Web 2.0 platform that allows to share content and information without the limitations of time and space. Social media networks have managed to become a part of today's lifestyle and are increasingly gaining importance when viewed from a state perspective. Sentiment analysis refers to the use of natural language processing, text analysis and computational linguistics to identify and extract subjective information in source materials. In this study, we focus on social media mining and sentiment analysis for students of an open and distance education system. Anadolu University which has approximately two million students and more than two million graduates, is a well-known institution in Turkey, that offers higher education through contemporary distance education model. Firstly, we have fetched Tweets related to Anadolu University open and distance education system. To perform sentiment analysis, these tweets were analysed by statistical and data mining techniques. Finally, results were visualized.
Year
Volume
132
Issue
3
Pages
753-755
Physical description
Dates
published
2017-09
References
  • [1] W. Medhat, A. Hassan, H. Korasy, Ain Shams Eng. J. 5, 1093 (2014)
  • [2] V. Jagtap, H. Pawar, Int. J. Scientif. Eng. Technol. 2, 164 (2013)
  • [3] S. Asur, B.A. Huberman, in: WI-IAT '10 Proc. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2010, p. 492, doi: 10.1109/WI-IAT.2010.63
  • [4] A. Karcı, O. Boy, Sosyal Ağlarin Web Madenciliği Teknikleri ile Analizive Ortak Atıf Analizi ile Benzerlik Tahmini, in: Elektrik-Elektronik ve Bilgisayar Sempozyumu, 2011
  • [5] M.J. Choy, M.L.F. Cheong, N.M. Ma, P.S. Koo, arXiv: 1108.5520, 2011 http://arXiv.org/abs/1108.5520,
  • [6] H. Wang, D. Can, A. Kazemzadeh, F. Bar, S. Narayanan, in: ACL '12 Proc. ACL 2012 System Demonstrations, 2012, p. 115
  • [7] M. Meral, B. Diri, Sentiment Analysis on Twitter, in: 2014 IEEE 22nd Signal Processing and Communications Applications Conf, 2014
  • [8] A. Ceron, L. Curini, S.M. Iacus, Soc. Sci. Comput. Rev. 33, 3 (2015), doi: 10.1177/0894439314521983
  • [9] S. Shang, D. Guo, J. Liu, K. Zheng, J. Wen, Neurocomputing 173, 118 (2016), doi: 10.1016/j.neucom.2015.06.086
  • [10] C. Shen, C. Kuo, Comput. Human Behav. 51, 568 (2015)
  • [11] G.B. Orgaz, J.J. Jung, D. Camacho, Inform. Fusion 28, 45 (2016), doi: 10.1016/j.inffus.2015.08.005
  • [12] R. Pandarachalil, S. Sendhilkumar, G.S. Mahalakshmi, Cognitive Computat. 7, 254 (2015)
  • [13] L. Shi, N. Agarwal, A. Agarwal, R. Garg, J. Spoelstra, Predicting US Primary Elections with Twitter (2012), paper presented at The workshop social network and social media analysis: methods, models and applications (NIPS)
  • [14] N. Ofek, S. Poria, L. Rokach, E. Cambria, A. Hussain, A. Shabtai, Cognitive Computat. 8, 467 (2016)
  • [15] R. Xu, T. Chen, Y. Xia, Q. Lu, B. Liu, X. Wang, Cognitive Computat. 7, 226 (2015)
  • [16] D.R. Recupero, V. Presutti, S. Consoli, A. Gangemi, A.G. Nuzzolese, Cognitive Computat. 7, 211 (2015)
  • [17] F.H. Khan, U. Qamar, S. Bashir, Cognitive Computat. 8, 614 (2016)
  • [18] A. Tripathy, A. Agrawal, S.K. Rath, Procedia Comput. Sci. 57, 821 (2015)
  • [19] A. Go, R. Bhayani, L. Huang, Twitter Sentiment Classification using Distant Supervision, Technical Report, Stanford 2009
  • [20] W. Dai, G. Xue, Q. Yang, Y. Yu, in: AAAI'07 Proc. 22nd National Conference on Artificial Intelligence, 2007, p. 540
  • [21] M. Cevri, D. Üstündağ, Acta Phys. Pol. A 130, 45 (2016), doi: 10.12693/APhysPolA.130.45
  • [22] NLTK 3.0, 14 September, 2016, http://www.nltk.org/
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n3p094kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.