Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 725-727
Article title

Investigation of Degradation of Electrical Properties after Thermal Oxidation of p-Type Cz-Silicon Wafers

Title variants
Languages of publication
In this study we conducted thermal oxidation of Czochralski p-type <100> silicon wafers. The oxidation was carried out at temperatures in the range of 850-1000°C, in a gas mixture of N₂:O₂, in order to deposit a thin layer (10 nm) of thermal silicon dioxide (SiO₂), generally used in the surface passivation of solar cells. The measurements of effective minority carriers lifetime τ_{eff} using the quasi-steady-state photoconductance have shown degradation of different samples after oxidation process. The calculation of surface recombination velocity after the oxidation process at different temperatures, gave the same value of 40 cm s¯¹, showing a low surface recombination velocity and, therefore, a good surface passivation. Finally, a study based on sample illumination technique, allowed us to conclude that our samples are dominated by bulk Shockley-Read-Hall recombination, caused by Fe-related centers, thereby causing the degradation of the lifetime of minority carriers.
Physical description
  • [1] Ç.Ş. Güçlü, A.F. Özdemir, A. Kökce, Ş. Altindal, Acta Phys. Pol. A 130, 325 (2016), doi: 10.12693/APhysPolA.130.325
  • [2] Z. Zhuo, Y. Sannomiya, K. Goto, T. Yamada, H. Ohmi, H. Kakiuchi, K. Yasutake, Curr. Appl. Phys. 12, S57 (2012), doi: 10.1016/j.cap.2012.04.015
  • [3] Z. Jianhua, W. Aihua, M.-A. Green, Solar Energy Mater. Solar Cells 65, 429 (2001), doi: 10.1016/S0927-0248(00)00123-9
  • [4] S. Zhengrong, S.R. Wenham, J. Jingjia, in: 34th IEEE, Photovoltaic Specialists Conf., Philadelphia, USA 2009, p. 1922
  • [5] J. Knobloch, S.W. Glunz, D. Biro, W. Warta, E. Schaffer, W. Wettling, in: 25th IEEE Photovoltaic Specialists Conf., vol. 4, (1996), p. 405
  • [6] G.A. Aberle, Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis, Centre for Photovoltaic Engineering, University of New South Wales, Sydney 2004
  • [7] J. Schmidt, M. Kerr, A. Cuevas, Sci. Technol. 16, 164 (2001)
  • [8] T. Lauinger, J. Moschner, A-G. Aberle, R. Hezel, J. Vac. Sci. Technol. A 16, 530 (1998)
  • [9] D. Macdonald, A. Cuevas, Appl. Phys. Lett. 74, 1710 (1999), doi: 10.1063/1.123663
  • [10] J.A. Hornbeck, J.R. Haynes, Phys. Rev. 97, 311 (1955), doi: 10.1103/PhysRev.97.311
  • [11] N. Ewen Grant, K.R. McIntosh, IEEE Electr. Dev. Lett. 31, 1002 (2010), doi: 10.1109/LED.2010.2052780
  • [12] D. Walz, J.-P. Joly, G. Kamarinos, Appl. Phys. A: Mater. Sci. Proc. 62, 345 (1996), doi: 10.1007/BF01594232
  • [13] D. Macdonald, A. Cuevas, J. Appl. Phys. 89, 7932 (2001), doi: 10.1063/1.1372156
  • [14] N. Khelifati, D. Bouhafs, A. Mebarek-Azzem, S.E.-H. Abaidia, B. Palahouane, Y. Kouhlane, Acta Phys. Pol. A 130, 188 (2016), doi: 10.12693/APhysPolA.130.188
  • [15] S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications, Springer, 2005
  • [16] D. Macdonald, T. Roth, P.N.K. Deenapanray, Appl. Phys. Lett. 89, 142107 (2006), doi: 10.1063/1.2358126
  • [17] C. Möller, A. Laades, K. Lauer, Solid State Phenom. 205, 265 (2014), doi: 10.4028/
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.