Journal
Article title
Title variants
Languages of publication
Abstracts
Thermo-reactive diffusion/deposition technique is an alternative to physical vapor deposition and chemical vapor deposition techniques for obtaining wear and corrosion resistant coatings on steel parts. In this work, thermo-reactive diffusion/deposition technique was used to produce niobium aluminum carbonitride-based coatings on AISI M2 steel. Characterization of the coatings was done by X-ray diffraction analysis, scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of the produced coatings was investigated by using potentiodynamic polarization in a solution of 0.5 M NaCl. Hard, compact and adherent coatings, mainly consisting of NbC and NbN phases were obtained. The corrosion behavior of the samples was investigation by potentiodynamic polarization measurements.
Discipline
Journal
Year
Volume
Issue
Pages
682-684
Physical description
Dates
published
2017-09
Contributors
author
- Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
author
- Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
author
- Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
author
- Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
References
- [1] H. Tavakoli, S.M. Mousavi Khoie, Mater. Chem. Phys. 124, 1134 (2010), doi: 10.1016/j.matchemphys.2010.08.047
- [2] S. Kirtay, Acta Phys. Pol. A 128, B-90 (2015), doi: 10.12693/APhysPolA.128.B-90
- [3] İ.H. Karahan, Acta Phys. Pol. A 130, 286 (2016), doi: 10.12693/APhysPolA.130.286
- [4] L. Shan, Y. Wang, Y. Zhang, Q. Zhang, Q. Xue, Wear 362-363, 97 (2016), doi: 10.1016/j.wear.2016.05.016
- [5] L. Pezzato, K. Brunelli, P. Dolcet, M. Dabalŕ, Surf. Coat. Technol. 307, 73 (2016), doi: 10.1016/j.surfcoat.2016.08.057
- [6] S. Khara, S. Choudhary, S. Sangal, K. Mondal, Surf. Coat. Technol. 296, 203 (2016), doi: 10.1016/j.surfcoat.2016.04.033
- [7] J A. Günen, Acta Phys. Pol. A 130, 217 (2016), doi: 10.12693/APhysPolA.130.217
- [8] A. Ghadi, M. Soltanieh, H. Saghafian, Z.G. Yang, Surf. Coat. Technol. 289, 1 (2016), doi: 10.1016/j.surfcoat.2016.01.048
- [9] U. Sen, S.S. Pazarlıoglu, S. Sen, Mater. Lett. 62, 2444 (2008), doi: 10.1016/j.matlet.2007.12.042
- [10] M. Biesuz, V.M. Sglavo, Surf. Coat. Technol. 286, 319 (2016), doi: 10.1016/j.surfcoat.2015.12.063
- [11] T. Arai, Thermochemical Surface Engineering of Steels, Woodhead Publishing, Oxford 2015
- [12] S. Sen, Mater. Design 27, 85 (2006), doi: 10.1016/j.matdes.2004.10.005
- [13] S. Sen, K. Kocaman, J. Mater. Sci. 46, 7784 (2011), doi: 10.1007/s10853-011-5758-3
- [14] A. Orjuelag, R. Rincón, J.J. Olaya, Surf. Coat. Technol. 259, 667 (2014), doi: 10.1016/j.surfcoat.2014.10.012
- [15] C.K.N. Oliveira, R.M.M. Riofano, L.C. Casteletti, Surf. Coat. Technol. 200, 5140 (2006), doi: 10.1016/j.surfcoat.2005.05.037
- [16] U. Sen, Mater. Chem. Phys. 86, 189 (2004), doi: 10.1016/j.matchemphys.2004.03.002
- [17] S. Sackl, H. Leitner, H. Clemens, S. Primig, Mater. Characterization 120, 323 (2016), doi: 10.1016/j.matchar.2016.09.021
- [18] H.C. Barshilia, B. Deepthi, K.S. Rajam, K.P. Bhatti, S. Chaudhary, J. Mater. Res. 23, 1258 (2008), doi: 10.1557/JMR.2008.0168
- [19] M. Hirai, Y. Ueno, T. Suzuki, W. Jiang, C. Grigoriu, K. Yatsui, Jpn. J. Appl. Phys. 40, 1056 (2001), doi: 10.1143/JJAP.40.1056
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n3p074kz