Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 617-619

Article title

Determination of the Fatigue Behavior of a Wheel Rim Using Finite Element Analysis

Content

Title variants

Languages of publication

EN

Abstracts

EN
Automobile wheel rims are critical elements that work under fatigue loading. For this reason, it is very important to determine fatigue damage of the wheel rims. Today, finite element analysis is used to make accurate predictions. In this study, it is aimed to determine Chaboche damage model parameters for an aluminium alloy wheel rim. Msc Marc software is used for finite element analysis. First, Chaboche damage model parameters are obtained using simple Holloman equation for finite element analysis. Model parameters are validated by single element tests. Then, fatigue behaviour of an automobile wheel rim is analysed with verified Chaboche parameters. At last, critical areas under fatigue loading are identified on the wheel rim.

Keywords

EN

Contributors

author
  • Bilecik Seyh Edebali University, Mechanical Engineering Department, Bilecik, Turkey
author
  • Sakarya University, Mechanical Engineering Department, Sakarya, Turkey
author
  • Sakarya University, Mechanical Engineering Department, Sakarya, Turkey

References

  • [1] Z.-G. Zheng, T. Sun, X.-Y. Xu, S.-Q. Pan, S. Yuan, Engin. Fail. Anal. 39, 124 (2014), doi: 10.1016/j.engfailanal.2014.01.021
  • [2] G. Baffet, A. Charara, D. Lenchner, Control Engin. Pract. 17, 1255 (2009), doi: 10.1016/j.conengprac.2009.05.005
  • [3] D. Shang, X. Liu, Y. Shan, E. Jiang, Int. J. Fatigue 93, 173 (2016), doi: 10.1016/j.ijfatigue.2016.08.020
  • [4] X. Wang, X. Zhang, Int. J. Fatigue 32, 434 (2010), doi: 10.1016/j.ijfatigue.2009.09.006
  • [5] U. Kocabicak, M. Firat, Engin. Fail. Anal. 8, 339 (2001), doi: 10.1016/s1350-6307(00)00031-5
  • [6] F. Yoshida, T. Uemori, Int. J. Plasticity 18, 661 (2002), doi: 10.1016/S0749-6419(01)00050-X
  • [7] F. Barlat, J. Lian, Int. J. Plasticity 5, 51 (1989), doi: 10.1016/0749-6419(89)90019-3
  • [8] J. Lemaitre, J.L. Chaboche, Mechanics of solid materials, Cambridge University Press, Cambridge 1990
  • [9] J.H. Holloman, Trans. Am. Inst. Mining Metallalurgical Engin. 162, 268 (1945)
  • [10] O. Karacali, Acta Phys. Pol. A 130, 249 (2016), doi: 10.12693/APhysPolA.130.249
  • [11] O. Karacali, Acta Phys. Pol. A 128, B-40 (2015), doi: 10.12693/APhysPolA.128.B-40
  • [12] R.M. Nejad, Engin. Fail. Anal. 45, 449 (2014), doi: 10.1016/j.engfailanal.2014.07.018
  • [13] J. Stearns, T.S. Srivatsan, A. Prakash, P.C. Lam, Mater. Sci. Engin. A 366, 262 (2004), doi: 10.1016/j.msea.2003.08.017
  • [14] M.M. Topac, S. Ercan, N.S. Kuralay, Engin. Fail. Anal. 20, 67 (2012), doi: 10.1016/j.engfailanal.2011.10.007
  • [15] L. Shaohua, Y. Shaopu, C. Liqun, Appl. Math. Modell. 40, 6310 (2016), doi: 10.1016/j.apm.2016.03.001

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n3p058kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.