PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 561-563
Article title

A New Computational Method Based on Laguerre Polynomials for Solving Certain Nonlinear Partial Integro Differential Equations

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study, we consider some nonlinear partial integro-differential equations. Most of these equations are used as mathematical models in many problems of physics, biology, chemistry, engineering, and in other areas. Our main purpose is to propose a new numerical method based on the Laguerre and Taylor polynomials, called matrix collocation method, for the numerical solution of the mentioned nonlinear equations under the initial or boundary conditions. To show the effectiveness of this approach, some examples along with error estimations are illustrated by tables and figures.
Publisher

Year
Volume
132
Issue
3
Pages
561-563
Physical description
Dates
published
2017-09
Contributors
author
  • Manisa Celal Bayar University, Department of Mathematics, Faculty of Science and Letters, Manisa, Turkey
author
  • Manisa Celal Bayar University, Department of Mathematics, Faculty of Science and Letters, Manisa, Turkey
References
  • [1] M. Koru, O. Serçe, Acta. Phys. Pol. A 130, 453 (2016), doi: 10.12693/APhysPolA.130.453
  • [2] I. Akkurt, H.O. Tekin, A. Mesbahi, Acta. Phys. Pol. A 128, 332 (2015), doi: 10.12693/APhysPolA.128.332
  • [3] S. Fiori, T. Gong, H.K. Lee, Cogn. Comput. 7, 715 (2015), doi: 10.1007/s12559-015-9353-9
  • [4] A.E. Tiryaki, R. Kozan, N.G. Adar, Acta. Phys. Pol. A 128, B-344 (2015), doi: 10.12693/APhysPolA.128.B-344
  • [5] N.M. Nagy, Acta. Phys. Pol. A 128, B-260 (2015), doi: 10.12693/APhysPolA.128.B-260
  • [6] A. Gepperth, C. Karaoguz, Cogn. Comput. 8, 924 (2016), doi: 10.1007/s12559-016-9389-5
  • [7] M. Urbanek, D. Blaszkiewicz, Acta. Phys. Pol. A 128, B-241 (2015), doi: 10.12693/APhysPolA.128.B-241
  • [8] M.A. Correia, F.C. Mena, A.J. Soares, in: Dynamics, Games and Science, Vol. II, Eds. M.M. Peixoto, A.A. Pinto, D.A.J. Rand, Springer, Berlin 2011, p. 247
  • [9] N. Zeng, Z. Wang, H. Zhang, F.E. Alsaadi, Cogn. Comput. 8, 143 (2016), doi: 10.1007/s12559-016-9396-6
  • [10] M. Ozsoy, K. Pehlivan, M. Firat, N. Ozsoy, V. Ucar, Acta. Phys. Pol. A 128, B-327 (2015), doi: 10.12693/APhysPolA.128.B-327
  • [11] J. Yang, L. Gong, Y. Tang, J. Yan, H. He, L. Zhang, G. Li, Cogn. Comput. 7, 582 (2015), doi: 10.1007/s12559-015-9323-2
  • [12] E. Boutalbi, L.A. Gougam, F. Mekideche-Chafa, Acta. Phys. Pol. A 128, B-271 (2015), doi: 10.12693/APhysPolA.128.B-271
  • [13] X. Nian, M. Sun, H. Guo, H. Wang, L. Dai, Cogn. Comput. 9, 225 (2017), doi: 10.1007/s12559-017-9448-6
  • [14] A. Tari, M.Y. Rahimi, S. Sharmarad, F. Talati, J. Comput. Appl. Math. 228, 70 (2009), doi: 10.1016/j.cam.2008.08.038
  • [15] Z. Jachiewicz, B. Zubik-Kowal, Appl. Num. Meth. 56, 433 (2006), doi: 10.1016/j.apnum.2005.04.021
  • [16] F. Fakhar-İzadi, M. Dehghan, Math. Meth. Appl. Sci. 36, 1485 (2013), doi: 10.1002/mma.2698
  • [17] B. Gürbüz, M. Sezer, C. Güler, J. Appl. Math. 2014, 682398 (2014), doi: 10.1155/2014/682398
  • [18] B. Gürbüz, M. Sezer, Acta. Phys. Pol. A 130, 194 (2016), doi: 10.12693/APhysPolA.130.194
  • [19] B. Gürbüz, M. Sezer, Biomath. Commun. 6, 1706047 (2016), doi: 10.11145/j.biomath.2017.06.047
  • [20] B. Bülbül, M. Sezer, Math. Probl. Eng. 7, 869749 (2013), doi: 10.1155/2013/869749
  • [21] K. Zaibak, K. Bouakaz, Acta. Phys. Pol. A 128, B-330 (2015), doi: 10.12693/APhysPolA.128.B-330
  • [22] Z. Avazzadeh, Z. Beygi Rizi, F.M. Maalek Ghaini, G.B. Loghmani, Eng. Anal. Bound. Elem. 36, 881 (2012), doi: 10.1016/j.enganabound.2011.09.013
  • [23] N. Bildik, A. Konuralp, Int. J. Nonlin. Sci. Numer. Simulat. 7, 65 (2006), doi: 10.1515/IJNSNS.2006.7.1.65
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n3p043kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.