Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 558-560

Article title

Laguerre Polynomial Solutions of a Class of Delay Partial Functional Differential Equations

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study, we develop a novel matrix collocation method based on the Laguerre polynomials to find the approximate solutions of some parabolic delay differential equations with integral terms subject to appropriate initial and boundary conditions. The method reduces the solution of the mentioned equations to the solution of a matrix equation which corresponds to system of algebraic equations with unknown Laguerre coefficients. Besides, the error analysis together with numerical results are performed to illustrate the efficiency of our method computationally.

Year

Volume

132

Issue

3

Pages

558-560

Physical description

Dates

published
2017-09

Contributors

author
  • Manisa Celal Bayar University, Department of Mathematics, Faculty of Art and Science, Manisa, Turkey
author
  • Manisa Celal Bayar University, Department of Mathematics, Faculty of Art and Science, Manisa, Turkey

References

  • [1] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York 2006, doi: 10.1007/978-1-4612-4050-1
  • [2] X. Fu, W. Zhang, J. Math. Anal. Appl. 191, 473 (1995), doi: 10.1006/jmaa.1995.1143
  • [3] A. Tezel Özturan, Acta. Phys. Pol. A 130, 14 (2016), doi: 10.12693/APhysPolA.130.14
  • [4] A. Daamouche, D. Fares, I. Maalem, K. Zemmouri, Acta. Phys. Pol. A 130, 28 (2016), doi: 10.12693/APhysPolA.130.28
  • [5] B. Kırış, O. Bingöl, R. Şenol, A. Altıntaş, Acta. Phys. Pol. A 130, 55 (2016), doi: 10.12693/APhysPolA.130.55
  • [6] S. Kabashi, S. Bekteshi, S. Ahmetaj, B. Saramati, V. Veliu, Acta. Phys. Pol. A 130, 122 (2016), doi: 10.12693/APhysPolA.130.122
  • [7] N. El Houda Benmansour, M. Bouamoud, M. Sahlaoui, Acta. Phys. Pol. A 130, 145 (2016), doi: 10.12693/APhysPolA.130.145
  • [8] A. Marzocchi, E. Vuk, ZAMP 54, 224 (2003), doi: 10.1007/s000330300002
  • [9] B. Gürbüz, M. Sezer, Appl. Math. Comput. 242, 255 (2014), doi: 10.1016/j.amc.2014.05.058
  • [10] A. Özdemir, Z. Erdem, I. Usuman, Acta. Phys. Pol. A 130, 228 (2016), doi: 10.12693/APhysPolA.130.228
  • [11] M. Koru, O. Serçe, Acta. Phys. Pol. A 130, 453 (2016), doi: 10.12693/APhysPolA.130.453
  • [12] Ö. Karaçalı, Acta. Phys. Pol. A 130, 249 (2016), doi: 10.12693/APhysPolA.130.249
  • [13] B. Bülbül, M. Sezer, Math. Prob. Eng. 2013, 869749 (2013), doi: 10.1155/2013/869749
  • [14] B. Gürbüz, M. Sezer, Acta. Phys. Pol. A 130, 194 (2016), doi: 10.12693/APhysPolA.130.194
  • [15] F. Fakhar-Izadi, M. Dehghan, J. Comput. Appl. Math. 235, 4032 (2011), doi: 10.1016/j.cam.2011.02.030

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n3p042kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.