PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 553-557
Article title

Numerical Investigation on Hydrodynamic Combustion and NO_x Emission Behavior in 8 MW Circulating Fluidized Bed

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Multi-phase flow is one of the types of flow which is frequently observed in natural phenomena and engineering applications. Circulating fluidized beds constitute an important application of multi-phase flow. The combustion and emission behaviours in circulating fluidized beds are determined by hydrodynamic of bearing. The most appropriate combustion can be provided with the hydrodynamic structure of bearing, taking into account fuel and operating parameters. Therefore, the hydrodynamic structure of circulating fluidized beds should be displayed with mathematical/physical modelling and simulation approach for its analysis and synthesis. Mathematical analysis in today's conditions is very difficult or impossible because of excessive turbulence, unstable and two-phase flow characteristics of the bed. Therefore, the most effective way to do this is the use the physical modelling and simulation approach. In this study, 8 MW circulating fluidized bed hydrodynamic analysis are made by ANSYS-FLUENT R14 commercial CFD code and then combustion and emissions analysis are made with hydrodynamic analysis results. These analysis results show that combustion chamber exit mean NO_x emission was 38.5 ppm and combustion chamber exit mean temperature was 1123 K.
Year
Volume
132
Issue
3
Pages
553-557
Physical description
Dates
published
2017-09
References
  • [1] A. Güngör, N. Eskin, Tesisat Mühendisliği Dergisi 84, 7 (2004) http://arsiv.mmo.org.tr/pdf/11995.pdf
  • [2] S. Dülger, Ph.D. Thesis, Ankara 2008
  • [3] P. Mirek, R. Sekret, W. Nowak, in: Proc. Fluidization XII, New Horizons in Fluidization Engineering, Vancouver 2007, p. 969
  • [4] O. Erbaş, H. Topal, A. Durmaz, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16 91 (2008), (in Turkish) http://birimler.dpu.edu.tr/app/views/panel/ckfinder/userfiles/16/files/Dergiler/16/11.pdf
  • [5] M. Weng, J. Plackmeyer, in: Proc. 10th Int. Conf. on Circulating Fluidized Beds and Fluidization Technology - CFB-10, 2011, Ed. T.M. Knowlton, p. 545
  • [6] K.M. Pandey, R. Kumar, Int. J. Chem. Eng. Appl. 2, 5 (2011), doi: 10.7763/IJCEA.2011.V2.140
  • [7] S. Portrat, B. Lemire, Cognit. Comput. 7, 333 (2015), doi: 10.1007/s12559-014-9294-8
  • [8] G. Li, Z.Y. Liu, Hou-Biao Li, P. Ren, Cognit. Comput. 8, 910 (2016), doi: 10.1007/s12559-016-9410-z
  • [9] Ö. Karaçalı, Acta. Phys. Pol. A 130, 249 (2016), doi: 10.12693/APhysPolA.130.249
  • [10] B. Nagy, Acta. Phys. Pol. A 128, B-164 (2015), doi: 10.12693/APhysPolA.128.B-164
  • [11] J.P. Simanjuntak, Z.A. Zainal, M.Z. Abdullah, Int. J. Renew. Energy Biofuels , 993061 (2014)
  • [12] M. Gharebaghi, R.M.A. Irons, L. Ma, M. Pourkashanian, A. Pranzitelli, Int. J. Greenhouse Gas Contr. 5S, S100 (2011), doi: 10.1016/j.ijggc.2011.05.030
  • [13] P. Stopford, Appl. Math. Modell. 26, 351 (2002), doi: 10.1016/s0307-904x(01)00066-x
  • [14] Y. Jiang, G. Qiu, H. Wang, Chem. Eng. Sci. 109, 85 (2014), doi: 10.1016/j.ces.2014.01.029
  • [15] H. Liu, A. Elkamel, A. Lohi, M. Biglari, Ind. Eng. Chem. Res. 52, 18162 (2013), doi: 10.1021/ie4024148
  • [16] J. Xie, W. Zhong, B. Jin, Y. Shao, H. Liu, Energy Fuels 28, 5523 (2014), doi: 10.1021/ef501095r
  • [17] L.G. Gibilaro, R. Di Felice, S.P. Waldram, Chem. Eng. Sci. 40, 1817 (1985), doi: 10.1016/0009-2509(85)80116-0
  • [18] Ö. Baysal, M.Sc. Thesis, Gazi University, 2007
  • [19] ANSYS FLUENT 14 User Guide, Fluent Inc., USA 2013 http://ansys.fem.ir/ansys_fluent_tutorial.pdf
  • [20] F. Kumaş, M.Sc. Thesis, Dumlupınar University, Kütahya 2009
  • [21] B. Gurel, O. Ipek, M. Kan, Acta. Phys. Pol. A 128, B-43 (2015), doi: 10.12693/APhysPolA.128.B-43
  • [22] P. Warzecha, A. Boguslawski, Energy 66, 732 (2014), doi: 10.1016/j.energy.2013.12.015
  • [23] R. Jovanovic, A. Milewska, B. Swiatkowski, A. Goanta, H. Spliethoff, Int. J. Heat Mass Transf. 54, 921 (2011), doi: 10.1016/j.ijheatmasstransfer.2010.10.011
  • [24] R. Backreedy, L. Fletcher, L. Ma, M. Pourkashanian, A. Williams, Combust. Sci. Technol. 178, 763 (2006), doi: 10.1080/00102200500248532
  • [25] E.H. Chui, G.D. Raithby, Num. Heat Transf. Part B 23, 269 (1993), doi: 10.1080/10407799308914901
  • [26] G.D. Raithby, E.H. Chui, J. Heat Transfer 112, 415 (1990), doi: 10.1115/1.2910394
  • [27] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, Singapore 1988, p. 336
  • [28] Y. Chang, K. Wu, Y. Chen, C. Chen, Energy Fuels 29, 3476 (2015), doi: 10.1021/acs.energyfuels.5b00233
  • [29] S. Belosevic, I. Tomanovic, V. Beljanski, D. Tucakovic, T. Zivanovic, Appl. Therm. Eng. 74, 102 (2015), doi: 10.1016/j.applthermaleng.2013.11.019
  • [30] G.G. De Soete, Proc. Combust. Inst. 15, 1093 (1975), doi: 10.1016/S0082-0784(75)80374-2
  • [31] A.E. Atımtay, H. Olgun, U. Kayahan, A. Ünlü, B. Engin, M. Varol, M. Çömlekçioğlu, B. Kamalı, H. Atakül, G. Bardakçıoğlu, Biores. Techn. 224 (C), 601 (2011), doi: 10.1016/j.biortech.2016.10.065
  • [32] M. Varol, A.T. Atimtay, H. . Olgun, Fuel 130, 1 (2014), doi: 10.1016/j.fuel.2014.04.002
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n3p041kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.