Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 521-523
Article title

Effect of Diffusion Annealing on Borides Layers Produced on XC38 Steel

Title variants
Languages of publication
In this work, we present a study of the effect of diffusion annealing at 700°C for 1 h on the nature and properties of boride layers obtained on XC38 steel through a molten salt consisting of borax (Na₂B₄O₇) and boron carbide (B₄C). We evaluated the changes brought by the diffusion annealing on the morphology of the boride layer, the thickness of this layer, the distribution of elements in the steel, and the hardness. Comparing the results obtained allowed concluding that the diffusion annealing will completely transform the two-phase layer formed of FeB and Fe₂B borides in a single-phase layer consisting of single boride Fe₂B. The transformation of the two-phase boride into a single-phase boride is done with an increase in thickness of about 30% compared to the initial thickness of the sample. The values of Si concentration obtained in the underlying zone after the diffusion annealing treatment are more important than those obtained in the same underlying zone of samples borided directly by immersion in molten salt consisting of borax and silicon carbide (SiC).
Physical description
  • Laboratoire de Génie des Procédés, Université de Laghouat, BP 37G 03000, Algeria
  • Laboratoire de Génie des Procédés, Université de Laghouat, BP 37G 03000, Algeria
  • Laboratoire de Génie des Procédés, Université de Laghouat, BP 37G 03000, Algeria
  • [1] S. Lampman, in: Introduction to Surface Hardening of Steels, Heat Treating, Vol. 4, ASM Handbook, ASM International, 1991, p. 259
  • [2] A. Greco, K. Mistry, V. Sista, O. Eryilmaz, A. Erdemir, Wear 271, 1754 (2011), doi: 10.1016/j.wear.2010.11.060
  • [3] M. Keddam, S.M. Chentouf, Appl. Surf. Sci. 252, 393 (2005), doi: 10.1016/j.apsusc.2005.01.016
  • [4] M. Keddam, Appl. Surf. Sci. 253, 757 (2006), doi: 10.1016/j.apsusc.2006.01.011
  • [5] O. Allaoui, N. Bouaouadja, G. Saindernan, Surf. Coat. Technol. 201, 3475 (2006), doi: 10.1016/j.surfcoat.2006.07.238
  • [6] R. Karim, A. Omar, Def. Diff. Forum 365, 194 (2015), doi: 10.4028/
  • [7] G. Kartal, O.L. Eryilmaz, G. Krumdick, A. Erdemir, S. Timur, Appl. Surf. Sci. 257, 6928 (2011), doi: 10.1016/j.apsusc.2011.03.034
  • [8] M. Kulka, N. Makuch, M. Popławski, Surf. Coat. Technol. 244, 78 (2014), doi: 10.1016/j.surfcoat.2014.01.057
  • [9] M. Kulka, N. Makuch, A. Pertek, L. Małdziński, J. Solid State Chem. 199, 196 (2013), doi: 10.1016/j.jssc.2012.12.029
  • [10] G. Kartal, S. Timur, V. Sista, O.L. Eryilmaz, A. Erdemir, Surf. Coat. Technol. 206, 2005 (2011), doi: 10.1016/j.surfcoat.2011.08.049
  • [11] I. Akkurt, A. Calik, H. Akyıldırım, Nucl. Eng. Des. 241, 55 (2011), doi: 10.1016/j.nucengdes.2010.10.009
  • [12] A. Calik, S. Akbunar, N. Ucar, N. Yilmaz, S. Karakas, I. Akkurt, Nucl. Technol. Radiat. Protect. 29, 186 (2014)
  • [13] I. Akkurt, Ann. Nucl. En. 36, 1702 (2009), doi: 10.1016/j.anucene.2009.09.005
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.