Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 493-495
Article title

The Effect of Return Electrode Position on Induced Electric Fields for Electrical Stimulation of Retinal Ganglion Cells

Title variants
Languages of publication
Age-related macular degeneration and retinitis pigmentosa are the most countered eye diseases that damage photoreceptors and cause to lose the visual sense. To regain the visual sense, studies are focused on the electrical stimulation of nerve cells remain intact. The electrical stimulation is carried out with the electrode arrays that include a certain number of stimulation electrodes and a common return electrode. In this study, the retinal stimulation is modelled using a computational model to investigate stimulation performance depending on the return electrode position and its geometrical properties. Stimulation induced electric field, current density and temperature over the retinal tissue are examined. It is seen that closer placement of return electrode and stimulation electrodes causes high electric field intensity and current density between electrodes, which is quite risky for long term chronic implementation by the reason of the increase in the temperature beyond the safe limits. It is concluded that there is an indispensability for the distances, three to five times of the electrode diameter, between electrodes to avoid electrode corrosion and tissue damage.
Physical description
  • Gazi University, Department of Electrical-Electronics Engineering, Ankara, Turkey
  • [1] J.D. Weiland, W. Liu, M.S. Humayun, Ann. Rev. Biomed. Eng. 7, 361 (2005), doi: 10.1146/annurev.bioeng.7.060804.100435
  • [2] S.K. Kelly, D.B. Shire, P. Doyle, M.D. Gingerich, W.A. Drohan, J.F. Rizzo, Jinghua Chen, S.F. Cogan, J.L. Wyatt, in: IEEE ISABEL Conf., Bratislava (Slovakia), 2009, p. 1, doi: 10.1109/ISABEL.2009.5373638
  • [3] G. Dagnelie, Curr. Opin. Neurol. 25, 67 (2012), doi: 10.1097/WCO.0B013E32834F02C3
  • [4] D. Güven, J.D. Weiland, M.S. Humayun, Ret-Vit 13, 247 (2005)
  • [5] R.A.B. Fernandes, B. Diniz, R. Ribeiro, M. Humayun, Neurosci. Lett. 519, 122 (2012), doi: 10.1016/j.neulet.2012.01.063
  • [6] M.E. Celik, I. Karagoz, Acta. Phys. Pol. A 128, B-297 (2015), doi: 10.12693/APhysPolA.128.B-297
  • [7] M.E. Celik, I. Karagoz, in: Signal Processing and Communications Applications Conf. (SIU), Trabzon (Turkey), IEEE, 2014, doi: 10.1109/SIU.2014.6830211
  • [8] A.K. Ahuja, M.R. Behrend, M. Kuroda, M.S. Humayun, J.D. Weiland, IEEE Trans. Biomed. Eng. 55, 1744 (2008), doi: 10.1109/TBME.2008.919126
  • [9] M.E. Celik, I. Karagoz, in: Int. Conf. on Electronics, Computer and Computation (ICECCO), IEEE, 2013, doi: 10.1109/ICECCO.2013.6718226
  • [10] S.S. Rao, The Finite Element Method in Engineering, Elsevier Science and Technology Books, 5th ed., 2010
  • [11] F.A. Orozco, M.Sc. Thesis, Linköping University, 2012
  • [12] S. Kim, P. Tathireddy, R.A. Normann, F. Solzbacher, IEEE Trans. Neur. Syst. Rehabilit. Eng. 15, 493 (2007), doi: 10.1109/TNSRE.2007.908429
  • [13] S.S. Yegeubayeva, A.B. Bayeshov, A.K. Bayeshova, Acta. Phys. Pol. A 128, B-455 (2015), doi: 10.12693/APhysPolA.128.B-455
  • [14] D. Reddy, V. Gondlekar, V. Gauns, Acta. Phys. Pol. A 130, 78 (2016), doi: 10.12693/APhysPolA.130.78
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.