Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 461-465

Article title

Influence of Cu Addition and Austempering Treatment on Mechanical Properties and Microstructure of GGG 50

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
An investigation was carried out to examine the effect of austempering on the microstructure and mechanical properties of nodular cast iron GGG 50 (DIN EN 1563) alloyed with different amount of copper. Optical, scanning electron microscopy and energy dispersive spectroscopy analyses were performed for microstructural characterization. In addition, hardness and tensile tests were carried out for mechanical properties determination. Specimens were austenitized at 900°C for an hour, then austempered for an hour at 330°C in salt bath and cooled at a room temperature in air. The results indicated that the addition of Cu to GGG 50 encouraged pearlite formation in the matrix structure. In addition, with the austempering heat treatment, the structure was transformed from ferrite + pearlite into ausferrite and retain austenite. Furthermore, for the alloy with 2 wt% Cu addition, it was noted that the graphite nodules diverged from sphericity and Cu was concentrated around the graphite. After austempering, mechanical properties were significantly improved and the highest mechanical properties were found at 1.5 wt% Cu.

Year

Volume

132

Issue

3

Pages

461-465

Physical description

Dates

published
2017-09

Contributors

author
  • Istanbul University, Engineering Faculty, Department of Metallurgical and Materials Eng., 34320 Avcilar, Istanbul, Turkey
author
  • Istanbul University, Engineering Faculty, Department of Metallurgical and Materials Eng., 34320 Avcilar, Istanbul, Turkey

References

  • [1] W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York 1993
  • [2] Y.J. Kim, H. Shin, H. Park, J.D. Lim, Mater. Lett. 62, 357 (2008), doi: 10.1016/j.matlet.2007.05.028
  • [3] Y. Tanaka, H. Kaget, Mater. Trans. 33, 543 (1992), doi: 10.2320/matertrans.1989.33.543
  • [4] R.B. Gundlach, J.F. Janowak, AFS Trans. 94, 377 (1983)
  • [5] K.P. Susil, Mater. Sci. Eng. A 297, 31 (2001), doi: 10.1016/S0921-5093(00)01272-7
  • [6] C. Lin, P. Lai, T. Shih, Int. J. Fatigue 18, 297 (1996), doi: 10.1016/0142-1123(96)82895-7
  • [7] P. Reed, R. Thomson, J. James, D. Putman, K. Lee, S. Gunn, Mater. Sci. Eng. A 346, 273 (2003), doi: 10.1016/S0921-5093(02)00545-2
  • [8] O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, M. Jovanovic, Mater. Lett. 58, 2707 (2004), doi: 10.1016/j.matlet.2004.02.041
  • [9] M.J. Pérez, M.M. Cisneros, H.F. López, Wear 260, 879 (2006), doi: 10.1016/j.wear.2005.04.001
  • [10] B. Ceccarelli, R. Dommarco, R. Martinez, M. Gamba, Wear 256, 49 (2004), doi: 10.1016/S0043-1648(03)00257-6
  • [11] Y. Mi, Scr. Metall. Mater. 32, 1313 (1995), doi: 10.1016/0956-716X(95)00163-P
  • [12] B.Y. Lin, E.T. Chen, T.S. Lei, Scr. Metall. Mater. 32, 1363 (1995), doi: 10.1016/0956-716X(95)00172-R
  • [13] C.H. Hsu, M.L. Chen, C.J. Hu, Mater. Sci. Eng. A 444, 339 (2007), doi: 10.1016/j.msea.2006.09.027
  • [14] A.R. Kiani-Rashid, J. Alloys Comp. 474, 490 (2009), doi: 10.1016/j.jallcom.2008.06.131
  • [15] M. Gorny, E. Tyrała, H. Lopez, J. Mater. Eng. Perform. 23, 3505 (2014), doi: 10.1007/s11665-014-1167-5
  • [16] A.R. Mattar, S.C. Heck, A.L. Neto, F.A.P. Fernandes, G.E. Totten, L.C. Casteletti, Int. Heat Treatm. Surf. Eng. 5, 78 (2011), doi: 10.1179/174951411X12956208225429
  • [17] A.M. Omran, G.T. Abdel-Jaber, M.M. Ali, Int. J. Eng. Res. Appl. 4, 90 (2014)
  • [18] Y. Amran, A. Katsman, P. Schaaf, M. Bamberger, Metall. Mater. Trans. B 41, 1052 (2010), doi: 10.1007/s11663-010-9388-y
  • [19] Standard Test Methods for Tension Testing of Metallic Materials [Metric], Annual Book of ASTM Standards, ASTM E8 M, Vol. 01.02, 1990
  • [20] U. Seker, H. Hasirci, J. Mater. Process. Technol. 173, 260 (2006), doi: 10.1016/jmatprotec.2005.25.258
  • [21] P.W. Shelton, A.A. Bonner, J. Mater. Process. Technol. 173, 269 (2006), doi: 10.1016/jmatprotec.2005.06.090
  • [22] J.E. Hurst, R.V. Riley, J. Iron Steel Inst. 155, 172 (1947)
  • [23] U. Batra, S. Ray, S.B. Prabhakar, J. Mater. Eng. Perform. 13, 64 (2004), doi: 10.1361/10599490417515
  • [24] M. Hafız, J. Mater. Sci. 36, 1293 (2001), doi: 10.1023/A:1004866817049
  • [25] M.A. Neri, C. Carreno, Mater. Character. 51, 219 (2003), doi: 10.1016/j.matchar.2003.09.001
  • [26] M.M. Anil Kumar, R. Suresh, Int. J. Mech. Eng. Robot. Res. 1, 113 (2012)
  • [27] B. Avishan, S. Yazdani, D. Jalali Vahid, Mater. Sci. Eng. A 523, 93 (2009), doi: 10.1016/j.msea.2009.09.044
  • [28] A.H. Elsayed, M.M. Megahed, A.A. Sadek, K.M. Abouelela, Mater. Des. 30, 1866 (2009), doi: 10.1016/j.matdes.2008.09.013
  • [29] C. Akca, N.G. Kinikoglu, Met. Sci. Heat Treatm. 52, 420 (2010), doi: 10.1017/s11041-010-9294-6

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n3p015kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.