PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 461-465
Article title

Influence of Cu Addition and Austempering Treatment on Mechanical Properties and Microstructure of GGG 50

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
An investigation was carried out to examine the effect of austempering on the microstructure and mechanical properties of nodular cast iron GGG 50 (DIN EN 1563) alloyed with different amount of copper. Optical, scanning electron microscopy and energy dispersive spectroscopy analyses were performed for microstructural characterization. In addition, hardness and tensile tests were carried out for mechanical properties determination. Specimens were austenitized at 900°C for an hour, then austempered for an hour at 330°C in salt bath and cooled at a room temperature in air. The results indicated that the addition of Cu to GGG 50 encouraged pearlite formation in the matrix structure. In addition, with the austempering heat treatment, the structure was transformed from ferrite + pearlite into ausferrite and retain austenite. Furthermore, for the alloy with 2 wt% Cu addition, it was noted that the graphite nodules diverged from sphericity and Cu was concentrated around the graphite. After austempering, mechanical properties were significantly improved and the highest mechanical properties were found at 1.5 wt% Cu.
Publisher

Year
Volume
132
Issue
3
Pages
461-465
Physical description
Dates
published
2017-09
Contributors
author
  • Istanbul University, Engineering Faculty, Department of Metallurgical and Materials Eng., 34320 Avcilar, Istanbul, Turkey
author
  • Istanbul University, Engineering Faculty, Department of Metallurgical and Materials Eng., 34320 Avcilar, Istanbul, Turkey
References
  • [1] W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York 1993
  • [2] Y.J. Kim, H. Shin, H. Park, J.D. Lim, Mater. Lett. 62, 357 (2008), doi: 10.1016/j.matlet.2007.05.028
  • [3] Y. Tanaka, H. Kaget, Mater. Trans. 33, 543 (1992), doi: 10.2320/matertrans.1989.33.543
  • [4] R.B. Gundlach, J.F. Janowak, AFS Trans. 94, 377 (1983)
  • [5] K.P. Susil, Mater. Sci. Eng. A 297, 31 (2001), doi: 10.1016/S0921-5093(00)01272-7
  • [6] C. Lin, P. Lai, T. Shih, Int. J. Fatigue 18, 297 (1996), doi: 10.1016/0142-1123(96)82895-7
  • [7] P. Reed, R. Thomson, J. James, D. Putman, K. Lee, S. Gunn, Mater. Sci. Eng. A 346, 273 (2003), doi: 10.1016/S0921-5093(02)00545-2
  • [8] O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, M. Jovanovic, Mater. Lett. 58, 2707 (2004), doi: 10.1016/j.matlet.2004.02.041
  • [9] M.J. Pérez, M.M. Cisneros, H.F. López, Wear 260, 879 (2006), doi: 10.1016/j.wear.2005.04.001
  • [10] B. Ceccarelli, R. Dommarco, R. Martinez, M. Gamba, Wear 256, 49 (2004), doi: 10.1016/S0043-1648(03)00257-6
  • [11] Y. Mi, Scr. Metall. Mater. 32, 1313 (1995), doi: 10.1016/0956-716X(95)00163-P
  • [12] B.Y. Lin, E.T. Chen, T.S. Lei, Scr. Metall. Mater. 32, 1363 (1995), doi: 10.1016/0956-716X(95)00172-R
  • [13] C.H. Hsu, M.L. Chen, C.J. Hu, Mater. Sci. Eng. A 444, 339 (2007), doi: 10.1016/j.msea.2006.09.027
  • [14] A.R. Kiani-Rashid, J. Alloys Comp. 474, 490 (2009), doi: 10.1016/j.jallcom.2008.06.131
  • [15] M. Gorny, E. Tyrała, H. Lopez, J. Mater. Eng. Perform. 23, 3505 (2014), doi: 10.1007/s11665-014-1167-5
  • [16] A.R. Mattar, S.C. Heck, A.L. Neto, F.A.P. Fernandes, G.E. Totten, L.C. Casteletti, Int. Heat Treatm. Surf. Eng. 5, 78 (2011), doi: 10.1179/174951411X12956208225429
  • [17] A.M. Omran, G.T. Abdel-Jaber, M.M. Ali, Int. J. Eng. Res. Appl. 4, 90 (2014)
  • [18] Y. Amran, A. Katsman, P. Schaaf, M. Bamberger, Metall. Mater. Trans. B 41, 1052 (2010), doi: 10.1007/s11663-010-9388-y
  • [19] Standard Test Methods for Tension Testing of Metallic Materials [Metric], Annual Book of ASTM Standards, ASTM E8 M, Vol. 01.02, 1990
  • [20] U. Seker, H. Hasirci, J. Mater. Process. Technol. 173, 260 (2006), doi: 10.1016/jmatprotec.2005.25.258
  • [21] P.W. Shelton, A.A. Bonner, J. Mater. Process. Technol. 173, 269 (2006), doi: 10.1016/jmatprotec.2005.06.090
  • [22] J.E. Hurst, R.V. Riley, J. Iron Steel Inst. 155, 172 (1947)
  • [23] U. Batra, S. Ray, S.B. Prabhakar, J. Mater. Eng. Perform. 13, 64 (2004), doi: 10.1361/10599490417515
  • [24] M. Hafız, J. Mater. Sci. 36, 1293 (2001), doi: 10.1023/A:1004866817049
  • [25] M.A. Neri, C. Carreno, Mater. Character. 51, 219 (2003), doi: 10.1016/j.matchar.2003.09.001
  • [26] M.M. Anil Kumar, R. Suresh, Int. J. Mech. Eng. Robot. Res. 1, 113 (2012)
  • [27] B. Avishan, S. Yazdani, D. Jalali Vahid, Mater. Sci. Eng. A 523, 93 (2009), doi: 10.1016/j.msea.2009.09.044
  • [28] A.H. Elsayed, M.M. Megahed, A.A. Sadek, K.M. Abouelela, Mater. Des. 30, 1866 (2009), doi: 10.1016/j.matdes.2008.09.013
  • [29] C. Akca, N.G. Kinikoglu, Met. Sci. Heat Treatm. 52, 420 (2010), doi: 10.1017/s11041-010-9294-6
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n3p015kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.