Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 2 | 405-407

Article title

Commutators of Jastrow Factors and Angular Momentum Operators

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present detailed calculations of commutators of the Jastrow factor and certain differential operators useful in the fractional quantum Hall effect. In particular, we analyze action of the angular momentum operators projected from the Haldane sphere on an arbitrary composite fermions state. Examined L⁺ and L¯ momentum operators and following uniformity condition had proven to be useful in the search for candidates for quantum Hall ground states among many families of polynomials including the Jack polynomials.

Keywords

EN

Contributors

author
  • Department of Theoretical Physics, Wrocław University of Science and Technology, Wrocław, Poland
author
  • Department of Theoretical Physics, Wrocław University of Science and Technology, Wrocław, Poland

References

  • [1] J.K. Jain, Composite Fermions, Pennsylvania State University, 2012, doi: 10.1007/3-540-48863-4
  • [2] J.K. Jain, Phys. Rev Lett. 63, 199 (1989), doi: 10.1103/PhysRevLett.63.199
  • [3] R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983), doi: 10.1103/PhysRevLett.50.1395
  • [4] D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982), doi: 10.1103/PhysRevLett.48.1559
  • [5] G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991), doi: 10.1016/0550-3213(91)90407-O
  • [6] N. Read, E. Rezayi, Phys. Rev. B 59, 8084 (1999), doi: 10.1103/PhysRevB.59.8084
  • [7] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. B 77, 184502 (2008), doi: 10.1103/PhysRevB.77.184502
  • [8] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 100, 246802 (2008), doi: 10.1103/PhysRevLett.100.246802
  • [9] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 102, 066802 (2009), doi: 10.1103/PhysRevLett.102.066802
  • [10] A. Bernevig, N. Regnault, Phys. Rev. Lett. 103, 206801 (2009), doi: 10.1103/PhysRevLett.103.206801
  • [11] R. Thomale, B. Estienne, N. Regnault, A. Bernevig, Phys. Rev. B 84, 045127 (2011), doi: 10.1103/PhysRevB.84.045127
  • [12] W. Baratta, P.J. Forrester, Nucl. Phys. B 843, 362 (2011), doi: 10.1016/j.nuclphysb.2010.09.018
  • [13] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta. Phys. Pol. A 126, 1134 (2014), doi: 10.12693/APhysPolA.126.1134
  • [14] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta. Phys. Pol. A 129, A-73 (2016), doi: 10.12693/APhysPolA.129.A-73
  • [15] B. Kuśmierz, A. Wójs, Acta. Phys. Pol. A 130, 1183 (2016), doi: 10.12693/APhysPolA.130.1183
  • [16] B. Kuśmierz, A. Wójs, Acta. Phys. Pol. A 130, 607 (2016), doi: 10.12693/APhysPolA.130.607
  • [17] F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983), doi: 10.1103/PhysRevLett.51.605
  • [18] G. Fano, F. Ortolani, E. Colombo, Phys. Rev. B 34, 2670 (1986), doi: 10.1103/PhysRevB.34.2670
  • [19] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York 1995
  • [20] I.G. Macdonald, 'A New Class of Symmetric Functions', in: Actes 20 Séminaire Lotharingien, 372/S20, Publ. I.R.M.A., Strasbourg 1988, p. 131
  • [21] S. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, American Mathematical Society, USA, 2003
  • [22] R.P. Stanley, Adv. Math. 77, 76 (1988), doi: 10.1016/0001-8708(89)90015-7
  • [23] F K. Sogo, J. Math. Phys. 35, 22822296 (1994), doi: 10.1063/1.530552
  • [24] A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs, Springer-Verlag, Berlin 2007, doi: 10.1007/3-540-48863-4
  • [25] L. Lapointe, A. Lascoux, J. Morse, Electr. J. Combin. 7, N1 (2000) http://combinatorics.org/ojs/index.php/eljc/article/view/v7i1n1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n2p53kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.