Title variants
Languages of publication
Abstracts
We present detailed calculations of commutators of the Jastrow factor and certain differential operators useful in the fractional quantum Hall effect. In particular, we analyze action of the angular momentum operators projected from the Haldane sphere on an arbitrary composite fermions state. Examined L⁺ and L¯ momentum operators and following uniformity condition had proven to be useful in the search for candidates for quantum Hall ground states among many families of polynomials including the Jack polynomials.
Discipline
Journal
Year
Volume
Issue
Pages
405-407
Physical description
Dates
published
2017-08
Contributors
author
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wrocław, Poland
author
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wrocław, Poland
References
- [1] J.K. Jain, Composite Fermions, Pennsylvania State University, 2012, doi: 10.1007/3-540-48863-4
- [2] J.K. Jain, Phys. Rev Lett. 63, 199 (1989), doi: 10.1103/PhysRevLett.63.199
- [3] R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983), doi: 10.1103/PhysRevLett.50.1395
- [4] D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982), doi: 10.1103/PhysRevLett.48.1559
- [5] G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991), doi: 10.1016/0550-3213(91)90407-O
- [6] N. Read, E. Rezayi, Phys. Rev. B 59, 8084 (1999), doi: 10.1103/PhysRevB.59.8084
- [7] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. B 77, 184502 (2008), doi: 10.1103/PhysRevB.77.184502
- [8] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 100, 246802 (2008), doi: 10.1103/PhysRevLett.100.246802
- [9] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 102, 066802 (2009), doi: 10.1103/PhysRevLett.102.066802
- [10] A. Bernevig, N. Regnault, Phys. Rev. Lett. 103, 206801 (2009), doi: 10.1103/PhysRevLett.103.206801
- [11] R. Thomale, B. Estienne, N. Regnault, A. Bernevig, Phys. Rev. B 84, 045127 (2011), doi: 10.1103/PhysRevB.84.045127
- [12] W. Baratta, P.J. Forrester, Nucl. Phys. B 843, 362 (2011), doi: 10.1016/j.nuclphysb.2010.09.018
- [13] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta. Phys. Pol. A 126, 1134 (2014), doi: 10.12693/APhysPolA.126.1134
- [14] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta. Phys. Pol. A 129, A-73 (2016), doi: 10.12693/APhysPolA.129.A-73
- [15] B. Kuśmierz, A. Wójs, Acta. Phys. Pol. A 130, 1183 (2016), doi: 10.12693/APhysPolA.130.1183
- [16] B. Kuśmierz, A. Wójs, Acta. Phys. Pol. A 130, 607 (2016), doi: 10.12693/APhysPolA.130.607
- [17] F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983), doi: 10.1103/PhysRevLett.51.605
- [18] G. Fano, F. Ortolani, E. Colombo, Phys. Rev. B 34, 2670 (1986), doi: 10.1103/PhysRevB.34.2670
- [19] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York 1995
- [20] I.G. Macdonald, 'A New Class of Symmetric Functions', in: Actes 20 Séminaire Lotharingien, 372/S20, Publ. I.R.M.A., Strasbourg 1988, p. 131
- [21] S. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, American Mathematical Society, USA, 2003
- [22] R.P. Stanley, Adv. Math. 77, 76 (1988), doi: 10.1016/0001-8708(89)90015-7
- [23] F K. Sogo, J. Math. Phys. 35, 22822296 (1994), doi: 10.1063/1.530552
- [24] A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs, Springer-Verlag, Berlin 2007, doi: 10.1007/3-540-48863-4
- [25] L. Lapointe, A. Lascoux, J. Morse, Electr. J. Combin. 7, N1 (2000) http://combinatorics.org/ojs/index.php/eljc/article/view/v7i1n1
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n2p53kz