Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The role of the annihilation of excitons on charge carriers has been theoretically investigated in organic semiconductors. We have developed the numerical drift-diffusion model by incorporation terms which describe the annihilation process. The transient photocurrent has been calculated for different injection barrier heights, exciton mobilities, and annihilation rate constants. We have demonstrated that the annihilation has a great influence on the range and the rising time of the photocurrent.
Discipline
- 71.35.-y: Excitons and related phenomena
- 73.50.Pz: Photoconduction and photovoltaic effects
- 73.50.-h: Electronic transport phenomena in thin films(for electronic transport in mesoscopic systems, see 73.23.-b; see also 73.40.-c Electronic transport in interface structures; for electronic transport in nanoscale materials and structures, see 73.63.-b)
Journal
Year
Volume
Issue
Pages
397-400
Physical description
Dates
published
2017-08
Contributors
author
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology G. Narutowicza 11/12, 80-233 Gdańsk, Poland
author
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology G. Narutowicza 11/12, 80-233 Gdańsk, Poland
References
- [1] P.W.M. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Adv. Mater. 19, 1551 (2007), doi: 10.1002/adma.200601093
- [2] P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 104, 3693 (2003), doi: 10.1063/1.1534621
- [3] A.J. Ferguson, N. Kopidakis, S.E. Shaheen, G. Rumbles, J. Phys. Chem. C 112, 9865 (2008), doi: 10.1021/jp7113412
- [4] I.A. Howard, J.M. Hodgkiss, X. Zhang, K.R. Kirov, H.A. Bronstein, C.K. Williams, R.H. Friend, S. Westenhoff, N.C. Greenham, J. Am. Chem. Soc. 132, 328 (2010), doi: 10.1021/ja908046h
- [5] J. Szmytkowski, Phys. Status Solidi RRL 6, 300 (2012), doi: 10.1002/pssr.201206231
- [6] B. Verreet, A. Bhoolokam, A. Brigeman, R. Dhanker, D. Cheyns, P. Heremans, A. Stesmans, N.C. Giebink, B.P. Rand, Phys. Rev. B 90, 115304 (2014), doi: 10.1103/PhysRevB.90.115304
- [7] I. Hwang, C.R. Mcneill, N.C. Greenham, J. Appl. Phys. 106, 094506 (2009), doi: 10.1063/1.3247547
- [8] Z.S. Wang, W.E.I. Sha, W.C.H. Choy, J. Appl. Phys. 120, 213101 (2016), doi: 10.1063/1.4970958
- [9] C.L. Braun, J. Chem. Phys. 80, 4157 (1984), doi: 10.1063/1.447243
- [10] D.L. Scharfetter, H.K. Gummel, IEEE Trans. Electron. Dev. 16, 64 (1969), doi: 10.1109/T-ED.1969.16566
- [11] I. Hwang, N.C. Greenham, Nanotechnology 19, 424012 (2008), doi: 10.1088/0957-4484/19/42/424012
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n2p51kz