Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 2 | 316-318

Article title

Relative Reflection Difference as a Method for Measuring the Thickness of the Exfoliated MoSe₂ Layers

Content

Title variants

Languages of publication

EN

Abstracts

EN
We propose a method for measuring the thickness of the exfoliated MoSe₂ layers deposited on Si/SiO₂ substrate, based on the reflectance measurements performed with laser light illumination at two different wavelengths: red and green from confocal microscope at room temperature. We demonstrate the correlation between the number of layers in a flake and the value of its relative reflection difference. We applied the transfer matrix method to calculate the reflectivity and verify our experimental results. The approach proposed by us allows for fast and automatic verification of the exfoliated MoSe₂ layers thickness on large areas of the substrate.

Keywords

Contributors

author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

References

  • [1] Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.M. Shih, J. Hone, T.F. Heinz, Phys. Rev. B 90, 205422 (2014), doi: 10.1103/PhysRevB.90.205422
  • [2] A. Pospischil, T. Mueller, Appl. Sci. 6, 78 (2016), doi: 10.3390/app6030078
  • [3] W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, M. Toh, X. Zhang, C. Kloc, P.H. Tan, G. Eda, Nanoscale 5, 9677 (2013), doi: 10.1039/c3nr03052k
  • [4] Q.H. Wang, J. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012), doi: 10.1038/nnano.2012.193
  • [5] M. Grzeszczyk, K. Gołasa, M. Zinkiewicz, K. Nogajewski, M.R. Molas, M. Potemski, A. Wysmołek, A. Babiński, 2D Materials 3, 025010 (2016), doi: 10.1088/2053-1583/3/2/025010
  • [6] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. van der Zant, G.A. Steele, 2D Materials 1, 011002 (2014), doi: 10.1088/2053-1583/1/1/011002
  • [7] K.P. Dhakal, D.L. Duong, J. Lee, J. Kim, Nanoscale 6, 13028 (2014), doi: 10.1039/C4NR03703K
  • [8] M. Grzeszczyk, K. Gołasa, B. Piętka, A. Babiński, J. Szczytko, Acta. Phys. Pol. A 126, 1207 (2014), doi: 10.12693/APhysPolA.126.1207
  • [9] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S.M. de Vasconcellos, R. Bratschitsch, Opt. Express 21, 4916 (2013), doi: 10.1364/OE.21.004908
  • [10] T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, E. Matsuura, J. Phys. Soc. Jpn. 49, 1069 (1980), doi: 10.1143/JPSJ.49.1069
  • [11] D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983), doi: 10.1103/PhysRevB.27.985
  • [12] A. Arora, K. Nogajewski, M. Molas, M. Koperski, M. Potemski, Nanoscale 7, 20769 (2015), doi: 10.1039/C5NR01536G

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n2p26kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.