Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 2 | 307-312

Article title

Photoluminescence Studies of Excitonic Complexes in Atomically Thin Mo(S_ySe_{1-y})₂ Alloys

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Transition metal dichalcogenides show new emergent properties at monolayer thickness, notably strong Coulomb and electron-phonon interactions enable new insight into physics of many body effects. Here, we report photoluminescence and reflectivity contrast measurements of excitons (X) and trions (T) and the Raman spectra of phonons in monolayers of Mo(S_ySe_{1-y})₂ alloys with sulfur mole content from y=0 up to y=1. Binary MoSe₂ and ternary Mo(S_ySe_{2-y}) alloys exhibit contrasting behavior in the temperature evolution of excitons and trions photoluminescence intensity from T=7-295 K. In MoSe₂ a trion dominates photoluminescence spectra at low temperatures but exciton dominates photoluminescence at higher temperature. In contrast, in ternary Mo(S_ySe_{1-y})₂ alloys and MoS₂ trions dominate photoluminescence spectra at all measured temperatures, with the trion to exciton photoluminescence intensity ratio increasing with sulfur content. We attribute the strong increase of the trion photoluminescence intensity in Mo(S_ySe_{1-y})₂ monolayers with increase of sulfur mole content to the significant increase of the two-dimensional electron gas concentration and also to the strong exciton-trion coupling mediated by an optical phonon. We also demonstrate that increasing sulfur content in Mo(S_ySe_{1-y})₂ alloys stabilizes total photoluminescence intensity at high temperature.

Year

Volume

132

Issue

2

Pages

307-312

Physical description

Dates

published
2017-08

Contributors

author
  • Department of Experimental Physics, Wrocław University of Science and Technology, Wrocław, Poland

References

  • [1] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010), doi: 10.1103/PhysRevLett.105.136805
  • [2] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010), doi: 10.1021/nl903868w
  • [3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011), doi: 10.1038/nnano.2010.279
  • [4] Y. Zhang, T.R. Chang, B. Zhou, Y.T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.T. Jeng, S.K. Mo, Z. Hussain, A. Bansil, Z.X. Shen, Nat. Nanotechnol. 9, 111 (2014), doi: 10.1038/nnano.2013.277
  • [5] E.S. Kadantsev, P. Hawrylak, Solid State Commun. 152, 909 (2012), doi: 10.1016/j.ssc.2012.02.005
  • [6] G.B. Liu, W.Y. Shan, Y. Yao, W. Yao, D. Xiao, Phys. Rev. B 88, 085433 (2013), doi: 10.1103/PhysRevB.88.085433
  • [7] A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, V. Falko, 2D Mater. 2, 022001 (2015), doi: 10.1088/2053-1583/2/2/022001
  • [8] H. Dery, Y. Song, Phys. Rev. B 92, 125431 (2015), doi: 10.1103/PhysRevB.92.125431
  • [9] Q. Feng, J. Wang, H. Xing, J.F. Destino, M.M. Arik, Ch. Zhao, K. Kang, B. Blizzard, L. Zhang, P. Zhao, S. Huang, S. Yang, F.V. Bright, J. Cerne, H. Zeng, Adv. Mater. 26, 2648 (2014), doi: 10.1002/adma.20130609
  • [10] T. Cao, G. Wang, W. Han, H. Ye, Ch. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Nat. Commun. 3, 887 (2012), doi: 10.1038/ncomms1882
  • [11] G. Sallen, L. Bouet, X. Marie, G. Wang, C.R. Zhu, W.P. Han, Y. Lu, P.H. Tan, T. Amand, B.L. Liu, B. Urbaszek, Phys. Rev. B 86, 081301 (2012), doi: 10.1103/PhysRevB.86.081301
  • [12] G. Kioseoglou, A.T. Hanbicki, M. Currie, A.L. Friedman, D. Gunlycke, B. Jonker, Appl. Phys. Lett. 101, 221907 (2012), doi: 10.1063/1.4768299
  • [13] X. Xu, D. Xiao, T.F. Heinz, W. Yao, Nat. Phys. 10, 343 (2014), doi: 10.1038/nphys2942
  • [14] D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012), doi: 10.1103/PhysRevLett.108.196802
  • [15] T. Scrace, Y. Tsai, B. Barman, L. Scheidenback, A. Petrou, G. Kioseoglou, I. Ozfidan, M. Korkusinski, P. Hawrylak, Nature Nanotechnol. 10, 603 (2015), doi: 10.1038/nnano.2015.78
  • [16] Y.J. Zhang, T. Oka, R. Suzuki, J.T. Ye, Y. Iwasa, Science 344, 725 (2014), doi: 10.1126/science.1251329
  • [17] F. Withers, O. Del Pozo-Zamudio, S. Schwarz, S. Dufferwiel, P.M. Walker, T. Godde, A.P. Rooney, A. Gholinia, C.R. Woods, P. Blake, S.J. Haigh, K. Watanabe, T. Taniguchi, I.L. Aleiner, A.K. Geim, V.I. Falko, A.I. Tartakovskii, K.S. Novoselov, Nano Lett. 15, 8223 (2015), doi: 10.1021/acs.nanolett.5b03740
  • [18] K.F. Mak, K.L. He, J. Shan, T.F. Heinz, Nature Nanotechnol. 7, 494 (2012), doi: 10.1038/nnano.2012.96
  • [19] A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian, J.S. Ross, B. Zhao, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Nature Nanotechnol. 8, 634 (2013), doi: 10.1038/nnano.2013.151
  • [20] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nature Nanotechnol. 7, 699 (2012), doi: 10.1038/nnano.2012.193
  • [21] G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, B. Urbaszek, Phys. Rev. B 90, 075413 (2014), doi: 10.1103/PhysRevB.90.075413
  • [22] Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S.G. Louie, X. Zhang, Nature 513, 214 (2014), doi: 10.1038/nature13734
  • [23] K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Phys. Rev. Lett. 113, 026803 (2014), doi: 10.1103/PhysRevLett.113.026803
  • [24] A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Phys. Rev. Lett. 113, 076802 (2014), doi: 10.1103/PhysRevLett.113.076802
  • [25] G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, B. Urbaszek, Appl. Phys. Lett. 106, 112101 (2015), doi: 10.1063/1.4916089
  • [26] X.X. Zhang, Y. You, S.Y.F. Zhao, T.F. Heinz, Phys. Rev. Lett. 115, 257403 (2015), doi: 10.1103/PhysRevLett.115.257403
  • [27] G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, B. Urbaszek, Phys. Rev. B 90, 075413 (2014), doi: 10.1103/PhysRevB.90.075413
  • [28] A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, M. Potemski, Nanoscale 7, 10421 (2015), doi: 10.1039/C5NR01536G
  • [29] J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Nature Commun. 4, 1 (2013), doi: 10.1038/ncomms2498
  • [30] A.A. Mitioglu, P. Plochocka, J.N. Jadczak, W. Escoffier, G.L.J.A. Rikken, L. Kulyuk, D.K. Maude, Phys. Rev. B 88, 245403 (2013), doi: 10.1103/PhysRevB.88.245403
  • [31] A. Singh, G. Moody, K. Tran, M.E. Scott, V. Overbeck, G. Berghäuser, J. Schaibley, E.J. Seifert, D. Pleskot, N.M. Gabor, J. Yan, D.G. Mandrus, M. Richter, E. Malic, X. Xu, X. Li, Phys. Rev. B 93, 041401 (2016), doi: 10.1103/PhysRevB.93.041401
  • [32] T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E.M. Alexeev, O. Del Pozo-Zamudio, O.V. Skrypka, K.S. Novoselov, M. Bayer, A.I. Tartakovskii, Phys. Rev. B 94, 165301 (2016), doi: 10.1103/PhysRevB.94.165301
  • [33] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, Opt. Express 21, 4908 (2013), doi: 10.1364/OE.21.004908
  • [34] S.Y. Chen, C. Zheng, M.S. Fuhrer, J. Yan, Nano Lett. 15, 2526 (2015), doi: 10.1021/acs.nanolett.5b00092
  • [35] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, F.M. Peeters, Phys. Rev. B 87, 165409 (2013), doi: 10.1103/PhysRevB.87.165409
  • [36] J. Jadczak, D.O. Dumcenco, Y.S. Huang, Y.C. Lin, K. Suenaga, P.H. Wu, H.P. Hsu, K.K. Tiong, J. Appl. Phys. 116, 193505 (2014), doi: 10.1063/1.4901994
  • [37] A.M. Jones, H. Yu, J.R. Schaibley, J. Yan, D.G. Mandrus, T. Taniguchi, K. Watanabe, H. Dery, W. Yao, X. Xu, Nat. Phys. 12, 323 (2016), doi: 10.1038/nphys3604
  • [38] S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang, T.S. Matthews, L. You, J. Li, J.C. Grossman, J. Wu, Nano Lett. 13, 2831 (2013), doi: 10.1021/nl4011172
  • [39] B. Miller, E. Parzinger, A. Vernickel, A.W. Holleitner, U. Wurstbauer, Appl. Phys. Lett. 106, 122103 (2015), doi: 10.1063/1.4916517
  • [40] S. Glasberg, G. Finkelstein, H. Shtrikman, I. Bar-Joseph, Phys. Rev. B 59, 10425R (1999), doi: 10.1103/PhysRevB.59.R10425
  • [41] J. Jadczak, L. Bryja, A. Wójs, M. Potemski, Phys. Rev. B 85, 195108 (2012), doi: 10.1103/PhysRevB.85.195108
  • [42] G. Bartsch, M. Gerbracht, D.R. Yakovlev, J.H. Blokland, P.C.M. Christianen, E.A. Zhukov, A.B. Dzyubenko, G. Karczewski, T. Wojtowicz, J. Kossut, J.C. Maan, M. Bayer, Phys. Rev. B 83, 235317 (2011), doi: 10.1103/PhysRevB.83.235317

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n2p24kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.