PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 2 | 307-312
Article title

Photoluminescence Studies of Excitonic Complexes in Atomically Thin Mo(S_ySe_{1-y})₂ Alloys

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Transition metal dichalcogenides show new emergent properties at monolayer thickness, notably strong Coulomb and electron-phonon interactions enable new insight into physics of many body effects. Here, we report photoluminescence and reflectivity contrast measurements of excitons (X) and trions (T) and the Raman spectra of phonons in monolayers of Mo(S_ySe_{1-y})₂ alloys with sulfur mole content from y=0 up to y=1. Binary MoSe₂ and ternary Mo(S_ySe_{2-y}) alloys exhibit contrasting behavior in the temperature evolution of excitons and trions photoluminescence intensity from T=7-295 K. In MoSe₂ a trion dominates photoluminescence spectra at low temperatures but exciton dominates photoluminescence at higher temperature. In contrast, in ternary Mo(S_ySe_{1-y})₂ alloys and MoS₂ trions dominate photoluminescence spectra at all measured temperatures, with the trion to exciton photoluminescence intensity ratio increasing with sulfur content. We attribute the strong increase of the trion photoluminescence intensity in Mo(S_ySe_{1-y})₂ monolayers with increase of sulfur mole content to the significant increase of the two-dimensional electron gas concentration and also to the strong exciton-trion coupling mediated by an optical phonon. We also demonstrate that increasing sulfur content in Mo(S_ySe_{1-y})₂ alloys stabilizes total photoluminescence intensity at high temperature.
Year
Volume
132
Issue
2
Pages
307-312
Physical description
Dates
published
2017-08
References
  • [1] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010), doi: 10.1103/PhysRevLett.105.136805
  • [2] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010), doi: 10.1021/nl903868w
  • [3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011), doi: 10.1038/nnano.2010.279
  • [4] Y. Zhang, T.R. Chang, B. Zhou, Y.T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.T. Jeng, S.K. Mo, Z. Hussain, A. Bansil, Z.X. Shen, Nat. Nanotechnol. 9, 111 (2014), doi: 10.1038/nnano.2013.277
  • [5] E.S. Kadantsev, P. Hawrylak, Solid State Commun. 152, 909 (2012), doi: 10.1016/j.ssc.2012.02.005
  • [6] G.B. Liu, W.Y. Shan, Y. Yao, W. Yao, D. Xiao, Phys. Rev. B 88, 085433 (2013), doi: 10.1103/PhysRevB.88.085433
  • [7] A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, V. Falko, 2D Mater. 2, 022001 (2015), doi: 10.1088/2053-1583/2/2/022001
  • [8] H. Dery, Y. Song, Phys. Rev. B 92, 125431 (2015), doi: 10.1103/PhysRevB.92.125431
  • [9] Q. Feng, J. Wang, H. Xing, J.F. Destino, M.M. Arik, Ch. Zhao, K. Kang, B. Blizzard, L. Zhang, P. Zhao, S. Huang, S. Yang, F.V. Bright, J. Cerne, H. Zeng, Adv. Mater. 26, 2648 (2014), doi: 10.1002/adma.20130609
  • [10] T. Cao, G. Wang, W. Han, H. Ye, Ch. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Nat. Commun. 3, 887 (2012), doi: 10.1038/ncomms1882
  • [11] G. Sallen, L. Bouet, X. Marie, G. Wang, C.R. Zhu, W.P. Han, Y. Lu, P.H. Tan, T. Amand, B.L. Liu, B. Urbaszek, Phys. Rev. B 86, 081301 (2012), doi: 10.1103/PhysRevB.86.081301
  • [12] G. Kioseoglou, A.T. Hanbicki, M. Currie, A.L. Friedman, D. Gunlycke, B. Jonker, Appl. Phys. Lett. 101, 221907 (2012), doi: 10.1063/1.4768299
  • [13] X. Xu, D. Xiao, T.F. Heinz, W. Yao, Nat. Phys. 10, 343 (2014), doi: 10.1038/nphys2942
  • [14] D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012), doi: 10.1103/PhysRevLett.108.196802
  • [15] T. Scrace, Y. Tsai, B. Barman, L. Scheidenback, A. Petrou, G. Kioseoglou, I. Ozfidan, M. Korkusinski, P. Hawrylak, Nature Nanotechnol. 10, 603 (2015), doi: 10.1038/nnano.2015.78
  • [16] Y.J. Zhang, T. Oka, R. Suzuki, J.T. Ye, Y. Iwasa, Science 344, 725 (2014), doi: 10.1126/science.1251329
  • [17] F. Withers, O. Del Pozo-Zamudio, S. Schwarz, S. Dufferwiel, P.M. Walker, T. Godde, A.P. Rooney, A. Gholinia, C.R. Woods, P. Blake, S.J. Haigh, K. Watanabe, T. Taniguchi, I.L. Aleiner, A.K. Geim, V.I. Falko, A.I. Tartakovskii, K.S. Novoselov, Nano Lett. 15, 8223 (2015), doi: 10.1021/acs.nanolett.5b03740
  • [18] K.F. Mak, K.L. He, J. Shan, T.F. Heinz, Nature Nanotechnol. 7, 494 (2012), doi: 10.1038/nnano.2012.96
  • [19] A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian, J.S. Ross, B. Zhao, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Nature Nanotechnol. 8, 634 (2013), doi: 10.1038/nnano.2013.151
  • [20] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nature Nanotechnol. 7, 699 (2012), doi: 10.1038/nnano.2012.193
  • [21] G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, B. Urbaszek, Phys. Rev. B 90, 075413 (2014), doi: 10.1103/PhysRevB.90.075413
  • [22] Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S.G. Louie, X. Zhang, Nature 513, 214 (2014), doi: 10.1038/nature13734
  • [23] K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Phys. Rev. Lett. 113, 026803 (2014), doi: 10.1103/PhysRevLett.113.026803
  • [24] A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Phys. Rev. Lett. 113, 076802 (2014), doi: 10.1103/PhysRevLett.113.076802
  • [25] G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, B. Urbaszek, Appl. Phys. Lett. 106, 112101 (2015), doi: 10.1063/1.4916089
  • [26] X.X. Zhang, Y. You, S.Y.F. Zhao, T.F. Heinz, Phys. Rev. Lett. 115, 257403 (2015), doi: 10.1103/PhysRevLett.115.257403
  • [27] G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, B. Urbaszek, Phys. Rev. B 90, 075413 (2014), doi: 10.1103/PhysRevB.90.075413
  • [28] A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, M. Potemski, Nanoscale 7, 10421 (2015), doi: 10.1039/C5NR01536G
  • [29] J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Nature Commun. 4, 1 (2013), doi: 10.1038/ncomms2498
  • [30] A.A. Mitioglu, P. Plochocka, J.N. Jadczak, W. Escoffier, G.L.J.A. Rikken, L. Kulyuk, D.K. Maude, Phys. Rev. B 88, 245403 (2013), doi: 10.1103/PhysRevB.88.245403
  • [31] A. Singh, G. Moody, K. Tran, M.E. Scott, V. Overbeck, G. Berghäuser, J. Schaibley, E.J. Seifert, D. Pleskot, N.M. Gabor, J. Yan, D.G. Mandrus, M. Richter, E. Malic, X. Xu, X. Li, Phys. Rev. B 93, 041401 (2016), doi: 10.1103/PhysRevB.93.041401
  • [32] T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E.M. Alexeev, O. Del Pozo-Zamudio, O.V. Skrypka, K.S. Novoselov, M. Bayer, A.I. Tartakovskii, Phys. Rev. B 94, 165301 (2016), doi: 10.1103/PhysRevB.94.165301
  • [33] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, Opt. Express 21, 4908 (2013), doi: 10.1364/OE.21.004908
  • [34] S.Y. Chen, C. Zheng, M.S. Fuhrer, J. Yan, Nano Lett. 15, 2526 (2015), doi: 10.1021/acs.nanolett.5b00092
  • [35] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, F.M. Peeters, Phys. Rev. B 87, 165409 (2013), doi: 10.1103/PhysRevB.87.165409
  • [36] J. Jadczak, D.O. Dumcenco, Y.S. Huang, Y.C. Lin, K. Suenaga, P.H. Wu, H.P. Hsu, K.K. Tiong, J. Appl. Phys. 116, 193505 (2014), doi: 10.1063/1.4901994
  • [37] A.M. Jones, H. Yu, J.R. Schaibley, J. Yan, D.G. Mandrus, T. Taniguchi, K. Watanabe, H. Dery, W. Yao, X. Xu, Nat. Phys. 12, 323 (2016), doi: 10.1038/nphys3604
  • [38] S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang, T.S. Matthews, L. You, J. Li, J.C. Grossman, J. Wu, Nano Lett. 13, 2831 (2013), doi: 10.1021/nl4011172
  • [39] B. Miller, E. Parzinger, A. Vernickel, A.W. Holleitner, U. Wurstbauer, Appl. Phys. Lett. 106, 122103 (2015), doi: 10.1063/1.4916517
  • [40] S. Glasberg, G. Finkelstein, H. Shtrikman, I. Bar-Joseph, Phys. Rev. B 59, 10425R (1999), doi: 10.1103/PhysRevB.59.R10425
  • [41] J. Jadczak, L. Bryja, A. Wójs, M. Potemski, Phys. Rev. B 85, 195108 (2012), doi: 10.1103/PhysRevB.85.195108
  • [42] G. Bartsch, M. Gerbracht, D.R. Yakovlev, J.H. Blokland, P.C.M. Christianen, E.A. Zhukov, A.B. Dzyubenko, G. Karczewski, T. Wojtowicz, J. Kossut, J.C. Maan, M. Bayer, Phys. Rev. B 83, 235317 (2011), doi: 10.1103/PhysRevB.83.235317
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n2p24kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.