PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 2 | 249-253
Article title

Thermal Desorption of Krypton Implanted into Silicon

Content
Title variants
Languages of publication
EN
Abstracts
EN
The thermal desorption spectrometry studies of krypton implanted Si samples are presented. Implantations (with the fluence 2×10¹⁶ cm¯²) were done with the energies 100, 150, and 200 keV. Additionally, a 200 keV and 100 keV Kr⁺G double implantation was performed. A sudden Kr release was observed in the ≈1100-1400 K range, most probably coming from the gas bubbles in cavities. The desorption activation energy varies from 2.5 eV (100 keV) to 0.8 (200 keV). The peak splitting suggests existence of two kinds of cavities trapping the implanted noble gas. Two Kr releases are observed for the 200 and 100 keV double-implanted samples. The peak shift of the release corresponding to 100 keV implantation could be a result of both introduced disorder and higher effective Kr concentration. The desorption activation energy is risen to ≈3.2 eV for both releases.
Keywords
EN
Publisher

Year
Volume
132
Issue
2
Pages
249-253
Physical description
Dates
published
2017-08
Contributors
author
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • National Center for Nuclear Studies, A. Sołtana 7, 05-400 Otwock, Poland
  • Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia
References
  • [1] A.A. van Gorkum, E.V. Kornelsen, Vacuum 31, 89 (1981), doi: 10.1016/S0042-207X(81)80165-0
  • [2] M. Zibrov, Yu. Gasparyan, S. Ryabtsev, A. Pisarev, Phys. Proced. 71, 83 (2015), doi: 10.1016/j.phpro.2015.08.318
  • [3] M.H.J. 't Hoen, B. Tyburska-Püschel, K. Ertl, M. Mayer, J. Rapp, A.W. Kleyn, P.A. Zeijlmans van Emmichoven, Nucl. Fusion 52, 023008 (2012), doi: 10.1088/0029-5515/52/2/023008
  • [4] V.Kh. Alimov, B. Tyburska-Püschel, S. Lindig, Y. Hatano, M. Balden, J. Roth, K. Isobe, M. Matsuyama, T. Yamanishi, J. Nucl. Mater. 420, 519 (2012), doi: 10.1016/j.jnucmat.2011.11.003
  • [5] C. Porosnicu, A. Anghel, K. Sugiyama, K. Krieger, J. Roth, C.P. Lungu, J. Nucl. Mater. 415, S713 (2011), doi: 10.1016/j.jnucmat.2010.12.238
  • [6] V. Raineri, M. Saggio, E. Rimini, J. Mater. Res. 15, 1449 (2000), doi: 10.1557/JMR.2000.0211
  • [7] A.A. Airapetov, L.B. Begrambekov, S.V. Vergazov, A.A. Kuzmin, O.C. Fadina, P.A. Shigin, J. Surf. Investig. X-ray Synchr. Neutron Techn. 4, 567 (2010) doi: , doi:10.1134/S1027451010040038
  • [8] E. Oliviero, M.L. David, M.F. Beaufort, J.F. Barbot, A. van Veen, Appl. Phys. Lett. 81, 4201 (2002), doi: 10.1063/1.1525059
  • [9] B. Pivac, O. Milat, P. Dubček, S. Bernstorff, F. Corni, C. Nobili, R. Tonini, Phys. Status Solidi A 198, 29 (2003), doi: 10.1002/pssa.200306457
  • [10] O. Morozov, V. Zhurba, I. Neklyudov, O. Mats, A. Rud, N. Chernyak, V. Progolaieva, Nanoscale Res. Lett. 10, 154 (2015), doi: 10.1186/s11671-015-0852-0
  • [11] R. Hanada, S. Haito, CYRIC Reports 1994, 13 (1994)
  • [12] I. Carvalho, H. Schut, A. Fedorov, N. Luzginova, P. Desgardin, J. Sietsma, J. Phys. Conf. Series 443, 012034 (2013), doi: 10.1088/1742-6596/443/1/012034
  • [13] S. Chang, T. Lin, T. Li, J. Nanomater. 2014, 690498 (2014), doi: 10.1155/2014/690498
  • [14] V. Venugopal, B.J. Thijsse, J. Phys. D Appl. Phys. 42, 165412 (2009), doi: 10.1088/0022-3727/42/16/165412
  • [15] V.A. Belous, A.S. Kuprin, N.S. Lomino, V.D. Ovcharenko, E.N. Reshetnyak, O.M. Morozov, V.I. Zhurba, G.N. Tolmachova, Proc. NAP 1, 04RES07 (2012)
  • [16] F. Corni, G. Calzolari, F. Gambetta, C. Nobili, R. Tonini, M. Zapparoli, Mater. Sci. Eng. B 71, 207 (2000), doi: 10.1016/S0921-5107(99)00376-1
  • [17] G.F. Cerofolini, G. Calzolari, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, R. Tonini, Phys. Rev. B 61, 10183 (2000), doi: 10.1103/PhysRevB.61.10183
  • [18] S. Godey, E. Ntsoenzok, T. Sauvage, A. van Veen, F. Labohm, M.F. Beaufort, J.F. Barbot, Mater. Sci. Eng. B 73, 54 (2000), doi: 10.1016/S0921-5107(99)00433-X
  • [19] P. Desgardin, M.-F. Barthe, E. Ntsoenzok, C.-L. Liu, Appl. Surf. Sci. 252, 3231 (2006), doi: 10.1016/j.apsusc.2005.08.080
  • [20] R. Blackburn, Metall. Rev. 11, 159 (1966), doi: 10.1179/mtlr.1966.11.1.159
  • [21] W.M. Lau, I. Bello, L.J. Huang, X. Feng, M. Vos, I.V. Mitchell, J. Appl. Phys. 74, 7101 (1993), doi: 10.1063/1.355024
  • [22] A. Filius, A. van Veen, K.R. Bijkerk, J.H. Evans, Radiat. Eff. 108, 1 (1989), doi: 10.1080/10420158908217864
  • [23] R. Hanada, S. Saito, S. Nagata, S. Yamaguchi, T. Shinozuka, I. Fujioka, Mater. Sci. Forum 196-201, 1375 (1995), doi: 10.4028/www.scientific.net/MSF.196-201.1375
  • [24] A. Drozdziel, A. Wojtowicz, M. Turek, K. Pyszniak, D. Maczka, B. Slowinski, Y.V. Yushkevich, J. Żuk, Acta. Phys. Pol. A 125, 1400 (2014), doi: 10.12693/APhysPolA.125.1400
  • [25] M. Turek, A. Droździel, K. Pyszniak, A. Wójtowicz, D. Mączka, Y. Yuschkevich, Y. Vaganov, J. Żuk, Acta. Phys. Pol. A 128, 849 (2015), doi: 10.12693/APhysPolA.128.849
  • [26] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010), doi: 10.1016/j.nimb.2010.02.091
  • [27] H. Assaf, E. Ntsoenzok, M.-F. Barthe, E. Leoni, M.-O. Ruault, S. Ashok, MRS Proc. 994, F06-04 (2007), doi: 10.1557/PROC-0994-F06-04
  • [28] P.A. Redhead, Vacuum 12, 203 (1962), doi: 10.1016/0042-207X(62)90978-8
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n2p12kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.