Journal
Article title
Title variants
Languages of publication
Abstracts
New classes of high-entropy alloys, which consist of at least 5 main elements with atomic concentrations 5-35 at.%, are under great interest in modern material science. It is also very important to explore the limits of resistance of high-entropy alloy nitrides to implantation by high-energy atoms. Structure and properties of nanostructured multicomponent (TiHfZrNbVTa)N coatings were investigated before and after ion implantation. We used the Rutherford backscattering, scanning electron microscopy with energy dispersive X-ray spectroscopy, high resolution transmission electron microscopy and scanning transmission electron microscopy with local microanalysis, X-ray diffraction and nanoindentation for investigations. Due to the high-fluence ion implantation (N⁺, the fluence was 10¹⁸ cm¯²) a multiphase structure was formed in the surface layer of the coating. This structure consisted of amorphous, nanocrystalline and initial nanostructured phases with small sizes of nanograins. Two phases were formed in the depth of the coating: fcc and hcp (with a small volume fraction). Nitrogen concentration reached 90 at.% near the surface and decreased with the depth. Nanohardness of the as-deposited coatings varied from 27 to 34 GPa depending on the deposition conditions. However, hardness decreased to a value of 12 GPa of the depth of the projected range after ion implantation and increased to 23 GPa for deeper layers.
Discipline
- 62.20.Qp: Friction, tribology, and hardness(see also 46.55.+d Tribology and mechanical contacts in continuum mechanics of solids; for materials treatment effects on friction related properties, see 81.40.Pq)
- 61.46.-w: Structure of nanoscale materials(for thermal properties of nanocrystals and nanotubes, see 65.80.-g; for mechanical properties of nanoscale systems, see 62.25.-g; for electronic transport in nanoscale materials, see 73.63.-b; see also 62.23.-c Structural classes of nanoscale systems; 64.70.Nd Structural transitions in nanoscale materials; for magnetic properties of nanostructures, see 75.75.-c)
Journal
Year
Volume
Issue
Pages
217-221
Physical description
Dates
published
2017-08
Contributors
author
- Sumy State University, Department of Nanoelectronics, R.-Korsakova 2, 40007, Sumy, Ukraine
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 20-618 Lublin, Poland
author
- Sumy State University, Department of Nanoelectronics, R.-Korsakova 2, 40007, Sumy, Ukraine
author
- Sumy State University, Department of Nanoelectronics, R.-Korsakova 2, 40007, Sumy, Ukraine
author
- Institute of Technological Systems of Information, Lublin University of Technology, 20-618 Lublin, Poland
author
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 20-618 Lublin, Poland
References
- [1] A.D. Pogrebnjak, A.M. Tolopa, Nucl. Instrum. Methods Phys. Res. B 52, 24 (1990), doi: 10.1016/0168-583X(90)90598-O
- [2] F.F. Komarov, Ion Beam Modification of Metals, Gordon and Breach, Philadelphia 1992
- [3] V.I. Lavrentiev, A.D. Pogrebnjak, Surf. Coat. Technol. 99, 24 (1998), doi: 10.1016/S0257-8972(97)00122-9
- [4] O.M. Ivasishin, A.D. Pogrebnjak, S.N. Bratushka, Nanostructured Layers and Coatings Formed by Ion-Plasma Fluxes in Titanium Alloys and Steels, Akademperiodika, Kiev 2011
- [5] A.D. Pogrebnjak, S.N. Bratushka, V.M. Beresnev, N. Levintant-Zayonts, Russ. Chem. Rev. 82, 1135 (2013), doi: 10.1070/RC2013v082n12ABEH004344
- [6] O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, D.B. Miracle, J. Mater. Sci. 47, 6522 (2012), doi: 10.1007/s10853-012-6582-0
- [7] G. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloys Comp. 591, 11 (2014), doi: 10.1016/j.jallcom.2013.12.210
- [8] L. Thome, S. Moll, J. Jagielski, A. Debelle, F. Garrido, G. Sattonnay, Acta. Phys. Pol. A 120, 7 (2011), doi: 10.12693/APhysPolA.120.7
- [9] N. Levintant-Zayonts, S. Kucharski, Acta. Phys. Pol. A 120, 79 (2011), doi: 10.12693/APhysPolA.120.79
- [10] J. Jagielski, U. Ostaszewska, D. Bielinski, A. Piatkowska, M. Romaniec, Acta. Phys. Pol. A 123, 888 (2013), doi: 10.12693/APhysPolA.123.888
- [11] V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, M. Braic, Surf. Coat. Technol. 211, 117 (2012), doi: 10.1016/j.surfcoat.2011.09.033
- [12] D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Appl. Surf. Sci. 257, 1361 (2010), doi: 10.1016/j.apsusc.2010.08.078
- [13] A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, Rus. Chem. Rev. 83, 1027 (2014), doi: 10.1070/RCR4407
- [14] A.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol, Mater. Chem. Phys. 147, 1079 (2014), doi: 10.1016/j.matchemphys.2014.06.062
- [15] T.N. Koltunowicz, J. Mater. Sci. Mater. Electron. 26, 6450 (2015), doi: 10.1007/s10854-015-3236-4
- [16] T.N. Kołtunowicz, P. Żukowski, V. Bondariev, J.A. Fedotova, A.K. Fedotov, Vacuum 120B, 44 (2015), doi: 10.1016/j.vacuum.2015.01.030
- [17] P. Zhukowski, J. Sidorenko, T.N. Kołtunowicz, J.A. Fedotova, A.V. Larkin, Przeglad Elektrotechniczny 86, 296 (2010), (in Polish)
- [18] J.V. Kasiuk, J.A. Fedotova, T.N. Koltunowicz, P. Zukowski, A.M. Saad, J. Przewoznik, Cz. Kapusta, J. Zukrowski, I.A. Svito, J. Alloys Comp. 586, S432 (2014), doi: 10.1016/j.jallcom.2012.09.058
- [19] D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017), doi: 10.1016/j.actamat.2016.08.081
- [20] A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Sobol', V.M. Beresnev, A.I. Kupchishin, O.V. Bondar, M.A. Lisovenko, H. Amekura, K. Kono, K. Oyoshi, Y. Takeda, Techn. Phys. 60, 1176 (2015), doi: 10.1134/S1063784215080228
- [21] A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, O.V. Sobol, V.M. Beresnev, K. Oyoshi, H. Amekura, Y. Takeda, Tech. Phys. Lett. 41, 1054 (2015), doi: 10.1134/S1063785015110085
- [22] A.D. Pogrebnjak, I.V.Yakushenko, O.V. Bondar, O.V. Sobol, V.M. Beresnev, K. Oyoshi, H. Amekura, Y. Takeda, Phys. Solid State 57, 1559 (2015), doi: 10.1134/S1063783415080259
- [23] Y. Zhao, S.M. Wong, H.M. Wong, S. Wu, T. Hu, K.W.K. Yeung, P.K. Chu, ACS Appl. Mater. Interf. 5, 1510 (2013), doi: 10.1021/am302961h
- [24] S. Kucharski, N. Levintant-Zayonts, J. Luckner, Mater. Des. 56, 671 (2014), doi: 10.1016/j.matdes.2013.11.056
- [25] X. Feng, G. Tang, X. Ma, M. Sun, L. Wang, Nucl. Instrum. Methods Phys. Res. B 301, 29 (2013), doi: 10.1016/j.nimb.2013.03.001
- [26] V.V. Uglov, G. Abadias, A.Y. Rovbut, S.V. Zlotski, I.A. Saladukhin, V.A. Skuratov, S. Petrovic, Nucl. Instrum. Methods Phys. Res. B 354, 269 (2015), doi: 10.1016/j.nimb.2014.11.012
- [27] A.D. Pogrebnjak, G. Abadias, O.V. Bondar, O.V. Sobol, V.M. Beresnev, A.V. Pshyk, A.A. Demianenko, K.O. Belovol, D.A. Kolesnikov, H. Komsta, Acta. Phys. Pol. A 125, 1284 (2014), doi: 10.12693/APhysPolA.125.1284
- [28] A.V. Khomenko, I.A. Lyashenko, Fluctuat. Noise Lett. 7, L111 (2007), doi: 10.1142/S0219477507003763
- [29] Y.F. Ye, Q. Wang, Y.L. Zhao, Q.F. He, J. Lu, Y. Yang, J. Alloys Comp. 681, 167 (2016), doi: 10.1016/j.jallcom.2016.04.239
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n2p04kz