Journal
Article title
Title variants
Languages of publication
Abstracts
The main goal of the proposed paper is to present the results of the nitrogen ion implantation effects on mechanical and corrosion properties of NiTi shape memory alloy. Local pseudoelasticity phenomena of NiTi were determined using the ultra-low load applied system. The load-penetration depth curves show that lower nitrogen fluence improves mechanical properties in the near surface layer but higher ion fluence leads to degradation of pseudoelasticity properties. Corrosion resistance of NiTi in the Ringer solution was evaluated by means of electrochemical methods. The results of potentiodynamic measurements in the anodic range for implanted NiTi indicate a decrease of passive current density range in comparison with non-treated NiTi, without any signs related to Ni release. The results of impedance measurements recorded at the corrosion potential show a capacitive behaviour for all samples without clear predominance of one of them. It can be explained by the fact that this result concerns the first stage of corrosion exposition. It is shown that nitrogen ion implantation leads to formation of modified surface of improved physicochemical properties.
Discipline
- 62.20.fg: Shape-memory effect; yield stress; superelasticity
- 81.40.Jj: Elasticity and anelasticity, stress-strain relations
- 61.72.-y: Defects and impurities in crystals; microstructure(for radiation induced defects, see 61.80.-x; for defects in surfaces, interfaces, and thin films, see 68.35.Dv and 68.55.Ln; see also 85.40.Ry Impurity doping, diffusion, and ion implantation technology; for effects of crystal defects and doping on superconducting transition temperature, see 74.62.Dh)
- 61.72.U-: Doping and impurity implantation
Journal
Year
Volume
Issue
Pages
210-216
Physical description
Dates
published
2017-08
Contributors
author
- Institute of Fundamental Technological Research, PAS, A. Pawinskiego 5B, 02-106 Warsaw, Poland
author
- Institute of Precision Mechanics, Duchnicka 3, 01-796 Warsaw, Poland
author
- Institute of Metallurgy and Materials Science, PAS, W.S. Reymonta 25, 30-059 Krakow, Poland
author
- Institute of Precision Mechanics, Duchnicka 3, 01-796 Warsaw, Poland
References
- [1] M.R. Gorji, S. Sanjabi, Mater. Lett. 73, 179 (2012), doi: 10.1016/j.matlet.2011.12.075
- [2] G. Laplanche, J. Pfetzing-Micklich, G. Eggler, Acta Mater. 78, 144 (2014), doi: 10.1016/j.actamat.2014.05.061
- [3] A. Ziolkowski, B. Raniecki, S. Miyazaki, Mater. Sci. Eng. A 378, 86 (2004), doi: 10.1016/j.msea.2003.11.056
- [4] Naval Research Laboratory http://nrl.navy.mil/mstd; General Nitinol Effects, Memry Corporation http://memry.com/nitinol-iq/nitinol-fundamentals/nitinol-effects
- [5] S. Shabalovskaya, J. Anderegg, J. Van Humbeeck, Acta Biomater. 4, 447 (2008), doi: 10.1016/j.actbio.2008.01.013
- [6] L. Tan, W.C. Crone, Acta Mater. 50, 4449 (2002), doi: 10.1016/S1359-6454(02)00251-3
- [7] N. Levintant, Vacuum 81, 1283 (2007), doi: 10.1016/j.vacuum.2007.01.058
- [8] K. Takeda, R. Mitsui, H. Tobushi, S. Homma, N. Levintant-Zayonts, S. Kucharski, Arch. Mech. 67, 293 (2015)
- [9] M. Es-Souni, Bioanal. Chem. 381, 557 (2005), doi: 10.1007/s00216-004-2888-3
- [10] Y.L. Chan, S.L. Wu, X.M. Liu, P.K. Chu, K.W.K. Yeung, W.W. Lu, A.H.W. Ngan, K.D.K. Luk, D. Chan, K.M.C. Cheung, Surf. Coat. Technol. 202, 1308 (2007), doi: 10.1016/j.surfcoat.2007.07.092
- [11] R.W.Y. Poon, J.P.Y. Ho, Xuanyong Liu, C.Y. Chung, P.K. Chu, K.W.K. Yeung, W.W. Lu, K. Cheung, Thin Solid Films 488, 20 (2005)), doi: 10.1016/j.tsf.2005.04.002
- [12] X.M. Liu, S.L. Wu, P.K. Chu, C.Y. Chung, C.L. Chu, Y.L. Chan, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, K.D.K. Luk, Surf. Coat. Technol. 202, 2436 (2008), doi: 10.1016/j.surfcoat.2007.08.017
- [13] R.E. McMahon, J. Ma, S.V. Verkhoturov, D. Munoz-Pinto, I. Karaman, F. Rubitschek, H.J. Maier, M.S. Hahn, Acta Biomater. 8, 2863 (2012), doi: 10.1016/j.actbio.2012.03.034
- [14] Y. Cheng, C. Wei, K.Y. Gan, L.C. Zhao, Surf. Coat. Technol. 176, 261 (2004), doi: 10.1016/S0257-8972(03)00745-X
- [15] N. Schevchenko, M.-T. Pham, M.F. Maitz, Appl. Surf. Sci. 235, 126 (2004)), doi: 10.1016/j.apsusc.2004.05.273
- [16] M.R. Souto, M.M. Laz, R.L. Reis, Biomaterials 24, 4213 (2003)), doi: 10.1016/s0142-9612(03)00362-4
- [17] S.L. de Assis, S. Wolynec, I. Costa, Electrochim. Acta 51, 1815 (2006), doi: 10.1016/j.electacta.2005.02.121
- [18] S. Kucharski, N. Levintant-Zayonts, J. Luckner, Mater. Des. 56, 671 (2014), doi: 10.1016/j.matdes.2013.11.056
- [19] D. Jarząbek, A. Kaufmann, H. Schift, Z. Rymuza, T. Jung, Nanotechnology 25, 215701 (2014), doi: 10.1088/0957-4484/25/21/215701
- [20] S. Kucharski, Z. Mróz, Int. J. Mech. Sci. 49, 1238 (2007)), doi: 10.1016/j.ijmecsci.2007.03.013
- [21] T. Czeppe, N. Levintant-Zayonts, Z. Swiatek, M. Michalec, O. Bonchyk, G. Savitskij, Vacuum 83, S214 (2009), doi: 10.1016/j.vacuum.2009.01.066
- [22] H. Pelletier, D. Muller, P. Mille, J.J. Grob, Surf. Coat. Technol. 158-159, 309 (2002), doi: 10.1016/s0257-8972(02)00188-3
- [23] Z. Tingting, L. Yan, L. Yong, Z. Xinqing, J. Mech. Behav. Biomed. Mater. 13, 174 (2012), doi: 10.1016/j.jmbbm.2012.04.004
- [24] W.M. Latimer, The Oxidation States of Elements and Their Potentials in Aqueous Solutions, 2nd ed., Prentice-Hall, New York 1952, p. 206, doi: 10.1097/00010694-195210000-00019
- [25] N. Figueira, T.M. Silva, M.J. Carmezim, J.C.S. Fernandes, Electrochim. Acta 54, 921 (2009), doi: 10.1016/j.electacta.2008.08.001
- [26] J.R. Scully, R.G. Kelly, in: ASM Handbook Corrosion, Vol. 13, ASM International, 2003, p. 73, doi: 10.1108/acmm.2003.12850daf.001
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n2p03kz