Title variants
Languages of publication
Abstracts
Theoretical analysis of the electron excitations in graphene on substrate by twisted, linear and circular polarization light is presented. We use a model of graphene with constant Rashba spin-orbit interaction. In this case, the band structure of electrons includes four energy bands. The main objective of this work is to compare light absorptions in graphene for different kinds of light, namely, twisted (with nonzero orbital angular momentum) and linear polarized light. The orbital angular momentum light is characterized by some parameters q and l, which can modify the response, while for the linear polarization, the absorption is modified only in the region determined by the Rashba spin-orbit coupling α.
Discipline
- 81.05.ue: Graphene(for structure of graphene, see 61.48.Gh; for phonons in graphene, see 63.22.Rc; for thermal properties, see 65.80.Ck; for graphene films, see 68.65.Pq; for electronic transport, see 72.80.Vp; for electronic structure, see 73.22.Pr; for optical properties, see 78.67.Wj)
- 78.20.Ci: Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity)
- 42.25.Bs: Wave propagation, transmission and absorption[see also 41.20.Jb—in electromagnetism; for propagation in atmosphere, see 42.68.Ay; see also 52.40.Db Electromagnetic (nonlaser) radiation interactions with plasma and 52.38-r Laser-plasma interactions—in plasma physics]
- 78.40.Fy: Semiconductors
Journal
Year
Volume
Issue
Pages
193-195
Physical description
Dates
published
2017-07
Contributors
References
- [1] M.I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge 2012
- [2] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992), doi: 10.1103/PhysRevA.45.8185
- [3] G. Spektor, A. David, G. Bartal, M. Orenstein, A. Hayat, Opt. Expr. 23, 32759 (2015), doi: 10.1364/OE.23.032759
- [4] A.T. O'Neil, I. MacVicar, L. Allen, M.J. Padgett, Phys. Rev. Lett. 88, 053601 (2002), doi: 10.1103/PhysRevLett.88.053601
- [5] M. Babiker, C.R. Bennett, D.L. Andrews, L.C. Dávila Romero, Phys. Rev. Lett. 89, 143601 (2002), doi: 10.1103/PhysRevLett.89.143601
- [6] H.M. Scholz-Marggraf, S. Fritzsche, V.G. Serbo, A. Afanasev, A. Surzhykov, Phys. Rev. A 90, 013425 (2014), doi: 10.1103/PhysRevA.90.013425
- [7] A.A. Peshkov, S. Fritzsche, A. Surzhykov, Phys. Rev. A 92, 043415 (2015), doi: 10.1103/PhysRevA.92.043415
- [8] G.F. Quinteiro, P.I. Tamborenea, Phys. Rev. B 79, 155450 (2009), doi: 10.1103/PhysRevB.79.155450
- [9] E.I. Rashba, Phys. Rev. B 79, 161409(R) (2009), doi: 10.1103/PhysRevB.79.161409
- [10] R. Jáuregui, Phys. Rev. A 70, 033415 (2004), doi: 10.1103/PhysRevA.70.033415
- [11] G.F. Quinteiro, P.I. Tamborenea, Phys. Rev. B 82, 125207 (2010), doi: 10.1103/PhysRevB.82.125207
- [12] M. Inglot, V.K. Dugaev, E.Y. Sherman, J. Barnaś, Phys. Rev. B 89, 155411 (2014), doi: 10.1103/PhysRevB.89.155411
- [13] M. Inglot, V.K. Dugaev, E.Y. Sherman, J. Barnaś, Phys. Rev. B 91, 195428 (2015), doi: 10.1103/PhysRevB.91.195428
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n1p53kz