Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 176-178

Article title

Ultrathin Glass for the Photovoltaic Applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chemically strengthened ultrathin glass with a thickness of less than 1 mm has many advantages, such as flexibility, smooth surface, good transmittance, excellent gas and water barrier, much higher toughened in relations to thermally tempered glass, higher impact resistance, increased corrosion resistance and much higher abrasion rate. Chemical strengthening process is a process where an ion exchange occurs by diffusion between the glass panes and the brine solution bath. The deeper penetration of the glass surface by ions contained in the brine bath contributes to the hardness of the glass sheets, which reduces the occurrence of surface defects that cause reflections. From the point of view of photovoltaic applications ultrathin glass significantly reduces the weight of the whole photovoltaic panel structure with respect to known solutions. Furthermore, the reduction of the glass thickness increases the transmission of solar energy in the visible range directly through the glass. In addition, chemical tempered glass has a lower reflectance of light from the surface than the thermally tempered glass. What is more, ultrathin glass is perfect substrate for deposition of nanomaterials, i.e. conductive films or quantum dots. In this work we demonstrate that chemically strengthened ultrathin glass is a perfect material for the photovoltaic applications, i.e. as a substrate for deposition of thin layers and for the design of photovoltaic modules of reduced weight.

Keywords

Contributors

author
  • Research and Development Centre for Photovoltaics, ML System S.A., Zaczernie 190 G, 36-062 Zaczernie, Poland
author
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland

References

  • [1] T. Ohishi, H. Kawada, T. Yoshida, T. Ohwada, Mater. Sci. Appl. 6, 1100 (2015), doi: 10.4236/msa.2015.612109
  • [2] S. Zhang, X. Yang, Y. Numata, L. Han, Energy Environ. Sci. 6, 1443 (2013), doi: 10.1039/C3EE24453A
  • [3] H. Aben, C. Guillemet, Photoelasticity of Glass, Springer, Berlin 1993, doi: 10.1007/978-3-642-50071-8
  • [4] R. Gy, Mater. Sci. Eng. B 149, 159 (2008), doi: 10.1016/j.mseb.2007.11.029
  • [5] H.P. Mahabaduge, W.L. Rance, J.M. Burst, M.O. Reese, D.M. Meysing, C.A. Wolden, J. Li, J.D. Beach, T.A. Gessert, W.K. Metzger, S. Garner, T.M. Barnes, Appl. Phys. Lett. 106, 133501 (2015), doi: 10.1063/1.4916634
  • [6] W.L. Rance, Appl. Phys. Lett. 104, 143903 (2014), doi: 10.1063/1.4870834
  • [7] S. Marsillac, V.Y. Parikh, A.D. Compaan, Sol. Energy Mater. Sol. Cells 91, 1398 (2007), doi: 10.1016/j.solmat.2007.04.025
  • [8] A. Gerthoffer, F. Roux, F. Emieux, P. Faucherand, H. Fournier, L. Grenet, S. Perraud, Thin Solid Films 592, 99 (2015), doi: 10.1016/j.tsf.2015.09.006
  • [9] E.D. Gaspera, Y. Peng, Q. Hou, L. Spiccia, U. Bach, J.J. Jasieniak, Y.-B. Cheng, Nano Energy 13, 249 (2015), doi: 10.1016/j.nanoen.2015.02.028
  • [10] J.-C. Wang, J. Mater. Chem. 20, 862 (2010), doi: 10.1039/B921396A
  • [11] I.J. Kramer, G. Moreno-Bautista, J.C. Minor, D. Kopilovic, E.H. Sargent, Appl. Phys. Lett. 105, 163902 (2014), doi: 10.1063/1.4898635
  • [12] M. Pagliaro, G. Palmisano, R. Ciriminna, Flexible Solar Cells, Wiley-VCH, 2008 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527323759.html
  • [13] M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Nature Commun. 3, 1 (2012), doi: 10.1038/ncomms1772
  • [14] J. Yoon, A.J. Baca, S.I. Park, P. Elvikis, J.B. Geddes III, Lanfang Li, Rak Hwan Kim, Jianliang Xiao, Shuodao Wang, Tae-Ho Kim, M.J. Motala, Bok Yeop Ahn, E.B. Duoss, J.A. Lewis, R.G. Nuzzo, P.M. Ferreira, Yonggang Huang, A. Rockett, J.A. Rogers, Nature Mater. 7, 907 (2008), doi: 10.1038/nmat2287
  • [15] P.M. Sommeling, M. Späth, H.J.P. Smit, N.J. Bakker, J.M. Kroon, J. Photochem. Photobiol. A Chem. 164, 137 (2004), doi: 10.1016/j.jphotochem.2003.12.017
  • [16] Y. Iwamoto, J. Europ. Ceram. Soc. 25, 257 (2005), doi: 10.1016/j.jeurceramsoc.2004.08.007

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n1p48kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.