PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 173-175
Article title

Comparison of Methods for Determining the Contrast Distribution in Interference Images with Speckle Noise

Content
Title variants
Languages of publication
EN
Abstracts
EN
Information about certain physical states of an examined object is encoded in the distribution of the fringe contrast in the metrological interference images of the object. Determining the contrast is one of the steps of converting the image into the distribution of the measured quantity in holographic fringe-contrast interferometry. In this paper, three methods of determining the fringe contrast in interference images containing speckle noise are compared. As the criterion for comparing the methods, the mean absolute error has been used. It turns out, in accordance with this criterium, the most effective method is the phase-shifting one.
Keywords
Publisher

Year
Volume
132
Issue
1
Pages
173-175
Physical description
Dates
published
2017-07
Contributors
author
  • Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
author
  • Interfaculty Division of Mathematics and Natural Sciences, The State Higher School of Technology and Economics, S. Czarnieckiego 16, 37-500 Jarosław, Poland
author
  • Faculty of Mathematics and Natural Sciences, University of Rzeszów, S. Pigonia 1, 35-310 Rzeszów, Poland
References
  • [1] M.J. Matczak, Proc. SPIE 370, 163 (1982), doi: 10.1117/12.934897
  • [2] M.J. Matczak, Opt. Lasers Eng. 9, 121 (1988), doi: 10.1016/0143-8166(88)90020-6
  • [3] Laser Speckle and Related Phenomena, Topics in Applied Optics, Ed. C.J. Dainty, Springer, Berlin 1975, doi: 10.1007/978-3-662-43205-1
  • [4] J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications, Roberts and Co., Englewood 2007
  • [5] M. Matsumura, Appl. Opt. 14, 660 (1975), doi: 10.1364/AO.14.000660
  • [6] E. Bieber, W. Osten, Proc. SPIE 1121, 393 (1989), doi: 10.1117/12.961302
  • [7] A. Ochoa, A.A. Silva-Moreno, Opt. Commun. 270, 161 (2007), doi: 10.1016/j.optcom.2006.09.062
  • [8] B. Zielinski, K. Patorski, Opto-Electron. Rev. 18, 155 (2010), doi: 10.2478/s11772-010-0007-x
  • [9] T. Kreis, Handbook of Holographic Interferometry. Optical and Digital Methods, Wiley, Weinheim 2005, doi: 10.1002/3527604154.ch4
  • [10] D.Y. Robinson, G.S. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Technique, Institute of Physics Publ., Bristol 1993
  • [11] M.J. Matczak, Proc. SPIE 661, 280 (1986), doi: 10.1117/12.938626
  • [12] J.W. Goodman, Statistical Optics, Wiley, New York 2000
  • [13] M.J. Matczak, J. Budziński, Proc. SPIE 1121, 136 (1989), doi: 10.1117/12.961261
  • [14] K. Gniadek, Optical Information Processing, PWN, Warsaw 1992
  • [15] K. Patorski, M. Kujawińska, L. Sałbut, Laser Interferometry with Automatic Image Analysis, Warsaw University of Technology, Warsaw 2005
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n1p47kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.