Title variants
Languages of publication
Abstracts
Electrical conductivity of nanofluids is one of the physical properties which are intensively investigated by researchers. This paper brings contributions in this research area. Electrical conductivity of nanofluids containing various mass concentration of silicon dioxide (SiO₂) nanoparticles suspended in ethylene glycol (EG) were investigated at various ambient temperatures. Temperature was changed from 20°C to 60°C with 10°C step. Measurements were performed with digital conductivity meter (MultiLine 3410, WTW GmBH, Weilheim, Germany) and it was observed that increase in mass concentration of SiO₂ nanoparticles cause increase in electrical conductivity. The same dependence was observed between temperature and electrical conductivity.
Discipline
- 73.63.-b: Electronic transport in nanoscale materials and structures(see also 73.23.-b Electronic transport in mesoscopic systems)
- 74.25.F-: Transport properties
- 72.15.Cz: Electrical and thermal conduction in amorphous and liquid metals and alloys
- 72.60.+g: Mixed conductivity and conductivity transitions
Journal
Year
Volume
Issue
Pages
155-157
Physical description
Dates
published
2017-07
References
- [1] S. Choi, ASME-Publications-Fed 231, 99 (1995
- [2] D. Cabaleiro, M.J. Pastoriza-Gallego, C. Gracia-Fernández, M.M. Piñeiro, L. Lugo, Nanoscale Res. Lett. 8, 1 (2013), doi: 10.1186/1556-276X-8-286
- [3] G. Żyła, Int. J. Heat Mass Transf. 92, 751 (2016), doi: 10.1016/j.ijheatmasstransfer.2015.09.045
- [4] G. Żyła, A. Witek, M. Gizowska, Appl. Phys. 117, 014302 (2015), doi: 10.1063/1.4903737
- [5] X. Li, C. Zou, T. Wang, X. Lei, J. Heat Mass Transf. 84, 925 (2015), doi: 10.1016/j.ijheatmasstransfer.2015.01.104
- [6] X. Li, C. Zou, X. Lei, W. Li, Int. J. Heat Mass Transf. 89, 613 (2015), doi: 10.1016/j.ijheatmasstransfer.2015.01.104
- [7] M. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J. Legido, M. Piñeiro, J. Chem. Thermodyn. 73, 23 (2014), doi: 10.1016/j.jct.2013.07.002
- [8] G. Żyła, J. Fal, J. Traciak, M. Gizowska, K. Perkowski, Mater. Chem. Phys. 180, 250 (2016), doi: 10.1016/j.matchemphys.2016.06.003
- [9] J. Fal, A. Barylyak, K. Besaha, Y.V. Bobitski, M. Cholewa, I. Zawlik, K. Szmuc, J. Cebulski, G. Żyła, Nanoscale Res. Lett. 11, 1 (2016), doi: 10.1186/s11671-016-1590-7
- [10] J. Fal, M. Cholewa, M. Gizowska, A. Witek, G. Żyła, J. Electron. Mater. 46, 856 (2017), doi: 10.1007/s11664-016-4971-x
- [11] M. Sharifpur, S. Adio, J. Meyer, in: Proc. 11th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2015), Kruger National Park (South Africa), 2015, p. 199, doi: 10.13140/RG.2.1.5009.5846
- [12] S. Talib, W. Azmi, I. Zakaria, W. Mohamed, A. Mamat, H. Ismail, W. Daud, Energy Proced. 79, 366 (2015), doi: 10.1016/j.egypro.2015.11.504
- [13] G. Żyła, J. Fal, Thermochim. Acta 637, 11 (2016), doi: 10.1016/j.tca.2016.05.006
- [14] P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Int. J. Therm. Sci. 48, 290 (2009), doi: 10.1016/j.ijthermalsci.2008.01.001
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n1p41kz