Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 155-157
Article title

Effect of Temperature and Mass Concentration of SiO₂ Nanoparticles on Electrical Conductivity of Ethylene Glycol

Title variants
Languages of publication
Electrical conductivity of nanofluids is one of the physical properties which are intensively investigated by researchers. This paper brings contributions in this research area. Electrical conductivity of nanofluids containing various mass concentration of silicon dioxide (SiO₂) nanoparticles suspended in ethylene glycol (EG) were investigated at various ambient temperatures. Temperature was changed from 20°C to 60°C with 10°C step. Measurements were performed with digital conductivity meter (MultiLine 3410, WTW GmBH, Weilheim, Germany) and it was observed that increase in mass concentration of SiO₂ nanoparticles cause increase in electrical conductivity. The same dependence was observed between temperature and electrical conductivity.
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland
  • [1] S. Choi, ASME-Publications-Fed 231, 99 (1995
  • [2] D. Cabaleiro, M.J. Pastoriza-Gallego, C. Gracia-Fernández, M.M. Piñeiro, L. Lugo, Nanoscale Res. Lett. 8, 1 (2013), doi: 10.1186/1556-276X-8-286
  • [3] G. Żyła, Int. J. Heat Mass Transf. 92, 751 (2016), doi: 10.1016/j.ijheatmasstransfer.2015.09.045
  • [4] G. Żyła, A. Witek, M. Gizowska, Appl. Phys. 117, 014302 (2015), doi: 10.1063/1.4903737
  • [5] X. Li, C. Zou, T. Wang, X. Lei, J. Heat Mass Transf. 84, 925 (2015), doi: 10.1016/j.ijheatmasstransfer.2015.01.104
  • [6] X. Li, C. Zou, X. Lei, W. Li, Int. J. Heat Mass Transf. 89, 613 (2015), doi: 10.1016/j.ijheatmasstransfer.2015.01.104
  • [7] M. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J. Legido, M. Piñeiro, J. Chem. Thermodyn. 73, 23 (2014), doi: 10.1016/j.jct.2013.07.002
  • [8] G. Żyła, J. Fal, J. Traciak, M. Gizowska, K. Perkowski, Mater. Chem. Phys. 180, 250 (2016), doi: 10.1016/j.matchemphys.2016.06.003
  • [9] J. Fal, A. Barylyak, K. Besaha, Y.V. Bobitski, M. Cholewa, I. Zawlik, K. Szmuc, J. Cebulski, G. Żyła, Nanoscale Res. Lett. 11, 1 (2016), doi: 10.1186/s11671-016-1590-7
  • [10] J. Fal, M. Cholewa, M. Gizowska, A. Witek, G. Żyła, J. Electron. Mater. 46, 856 (2017), doi: 10.1007/s11664-016-4971-x
  • [11] M. Sharifpur, S. Adio, J. Meyer, in: Proc. 11th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2015), Kruger National Park (South Africa), 2015, p. 199, doi: 10.13140/RG.2.1.5009.5846
  • [12] S. Talib, W. Azmi, I. Zakaria, W. Mohamed, A. Mamat, H. Ismail, W. Daud, Energy Proced. 79, 366 (2015), doi: 10.1016/j.egypro.2015.11.504
  • [13] G. Żyła, J. Fal, Thermochim. Acta 637, 11 (2016), doi: 10.1016/j.tca.2016.05.006
  • [14] P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Int. J. Therm. Sci. 48, 290 (2009), doi: 10.1016/j.ijthermalsci.2008.01.001
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.