Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 149-151

Article title

An Experimental Investigation of Electrical Conductivity of Y₃Al₅O₁₂-Ethylene Glycol Nanofluids

Content

Title variants

Languages of publication

EN

Abstracts

EN
Paper presents results of experimental studies of electrical conductivity of yttrium aluminum garnet-ethylene glycol (Y₃Al₅O₁₂-EG, YAG-EG) nanofluids, which were prepared by dispersing commercially available nanoparticles manufactured by Baikowski (Annecy, France, ID LOT: 18513) in ethylene glycol. The electrical conductivity was measured using conductivity meter MultiLine 3410 (WTW GmBH, Weilheim, Germany). In turn the temperature was stabilized in a water bath MLL 547 (AJL Electronic, Cracow, Poland). The electrical conductivity of YAG-EG nanofluids with various mass concentrations form 5% to 20% was investigated at different ambient temperatures. The experimental data indicate that changing volume fraction of YAG nanoparticles in ethylene glycol cause change of electrical conductivity of nanofluid. It was also presented that electrical conductivity depends on temperature of materials.

Keywords

Contributors

author
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland
author
  • Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, Poland
author
  • Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, Poland
author
  • Department of Biophysics, University of Rzeszów, Rzeszów, Poland
author
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland

References

  • [1] S. Choi, ASME-Publications-Fed 231, 99 (1995)
  • [2] P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, Int. Nano. Lett. 4, 109 (2014), doi: 10.1007/s40089-014-0126-3
  • [3] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energ. Rev. 53, 779 (2016), doi: 10.1016/j.rser.2015.09.033
  • [4] L. Wang, H. Chen, S. Witharana,Recent. Pat. Nanotechnol. 7, 232 (2013), doi: 10.2174/18722105113079990003
  • [5] S. Angayarkanni, J. Philip, Adv. Coll. Interf. 225, 146 (2015), doi: 10.1016/j.cis.2015.08.014
  • [6] A. Singh, Defence. Sci. J. 58, 600 (2008), doi: 10.14429/dsj.58.1682
  • [7] J. Philip, P. Shima, Adv. Coll. Interf. 183, 30 (2012), doi: 10.14429/dsj.58.1682
  • [8] S. Murshed, K. Leong, C. Yang, Appl. Therm. Eng. 28, 2109 (2008), doi: 10.1016/j.applthermaleng.2008.01.005
  • [9] X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007), doi: 10.1016/j.ijthermalsci.2006.06.010
  • [10] M.K. Abdolbaqi, W. Azmi, R. Mamat, K. Sharma, G. Najafi, Appl. Therm. Eng. 102, 932 (2016), doi: 10.1016/j.applthermaleng.2016.03.074
  • [11] S.N. Shoghl, J. Jamali, M.K. Moraveji, Exp. Therm. Fluid. Sci. 74, 339 (2016), doi: 10.1016/j.expthermflusci.2016.01.004
  • [12] A.M. Khdher, N.A.C. Sidik, W.A.W. Hamzah, R. Mamat, Int. Commun. Heat. Mass. 73, 75 (2016), doi: 10.1016/j.icheatmasstransfer.2016.02.006
  • [13] G. Żyła, J. Fal, Thermochim. Acta 637, 11 (2016), doi: 10.1016/j.tca.2016.05.006
  • [14] G. Żyła, Int. J. Heat. Mass. Transf. 92, 751 (2016), doi: 10.1016/j.ijheatmasstransfer.2015.09.045
  • [15] S. Ganguly, S. Sikdar, S. Basu, Powder Technol. 196, 326 (2009), doi: 10.1016/j.powtec.2009.08.010
  • [16] A.A. Minea, R.S. Luciu, Microfluid. Nanofluidics 13, 977 (2012), doi: 10.1007/s10404-012-1017-4
  • [17] M. Hadadian, E.K. Goharshadi, A. Youssefi,J. Nanopart. Res. 16, 1 (2014), doi: 10.1007/s11051-014-2788-1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n1p39kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.