PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 149-151
Article title

An Experimental Investigation of Electrical Conductivity of Y₃Al₅O₁₂-Ethylene Glycol Nanofluids

Content
Title variants
Languages of publication
EN
Abstracts
EN
Paper presents results of experimental studies of electrical conductivity of yttrium aluminum garnet-ethylene glycol (Y₃Al₅O₁₂-EG, YAG-EG) nanofluids, which were prepared by dispersing commercially available nanoparticles manufactured by Baikowski (Annecy, France, ID LOT: 18513) in ethylene glycol. The electrical conductivity was measured using conductivity meter MultiLine 3410 (WTW GmBH, Weilheim, Germany). In turn the temperature was stabilized in a water bath MLL 547 (AJL Electronic, Cracow, Poland). The electrical conductivity of YAG-EG nanofluids with various mass concentrations form 5% to 20% was investigated at different ambient temperatures. The experimental data indicate that changing volume fraction of YAG nanoparticles in ethylene glycol cause change of electrical conductivity of nanofluid. It was also presented that electrical conductivity depends on temperature of materials.
Keywords
Year
Volume
132
Issue
1
Pages
149-151
Physical description
Dates
published
2017-07
References
  • [1] S. Choi, ASME-Publications-Fed 231, 99 (1995)
  • [2] P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, Int. Nano. Lett. 4, 109 (2014), doi: 10.1007/s40089-014-0126-3
  • [3] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energ. Rev. 53, 779 (2016), doi: 10.1016/j.rser.2015.09.033
  • [4] L. Wang, H. Chen, S. Witharana,Recent. Pat. Nanotechnol. 7, 232 (2013), doi: 10.2174/18722105113079990003
  • [5] S. Angayarkanni, J. Philip, Adv. Coll. Interf. 225, 146 (2015), doi: 10.1016/j.cis.2015.08.014
  • [6] A. Singh, Defence. Sci. J. 58, 600 (2008), doi: 10.14429/dsj.58.1682
  • [7] J. Philip, P. Shima, Adv. Coll. Interf. 183, 30 (2012), doi: 10.14429/dsj.58.1682
  • [8] S. Murshed, K. Leong, C. Yang, Appl. Therm. Eng. 28, 2109 (2008), doi: 10.1016/j.applthermaleng.2008.01.005
  • [9] X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007), doi: 10.1016/j.ijthermalsci.2006.06.010
  • [10] M.K. Abdolbaqi, W. Azmi, R. Mamat, K. Sharma, G. Najafi, Appl. Therm. Eng. 102, 932 (2016), doi: 10.1016/j.applthermaleng.2016.03.074
  • [11] S.N. Shoghl, J. Jamali, M.K. Moraveji, Exp. Therm. Fluid. Sci. 74, 339 (2016), doi: 10.1016/j.expthermflusci.2016.01.004
  • [12] A.M. Khdher, N.A.C. Sidik, W.A.W. Hamzah, R. Mamat, Int. Commun. Heat. Mass. 73, 75 (2016), doi: 10.1016/j.icheatmasstransfer.2016.02.006
  • [13] G. Żyła, J. Fal, Thermochim. Acta 637, 11 (2016), doi: 10.1016/j.tca.2016.05.006
  • [14] G. Żyła, Int. J. Heat. Mass. Transf. 92, 751 (2016), doi: 10.1016/j.ijheatmasstransfer.2015.09.045
  • [15] S. Ganguly, S. Sikdar, S. Basu, Powder Technol. 196, 326 (2009), doi: 10.1016/j.powtec.2009.08.010
  • [16] A.A. Minea, R.S. Luciu, Microfluid. Nanofluidics 13, 977 (2012), doi: 10.1007/s10404-012-1017-4
  • [17] M. Hadadian, E.K. Goharshadi, A. Youssefi,J. Nanopart. Res. 16, 1 (2014), doi: 10.1007/s11051-014-2788-1
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n1p39kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.