Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 146-148
Article title

Electrical Conductivity of Ethylene Glycol Based Nanofluids with Different Types of Thulium Oxide Nanoparticles

Title variants
Languages of publication
The paper presents experimental investigation on electrical conductivity of thulium oxides-ethylene glycol (Tm₂O₃-EG) nanofluids based on nanoparticles with three different sizes, and prepared in different conditions. Nanofluids were prepared with two-step method with use of the nanoparticles obtained by precipitation method. Measurements were conducted at constant temperature 293.15 K for various mass concentrations from 0% to 20% with 5% step. The electrical conductivity was measured using conductivity meter MultiLine 3410 (WTW GmBH, Weilheim, Germany) and temperature was stabilized in a water bath MLL 547 (AJL Electronic, Cracow, Poland). The results indicate that increase in mass concentration of nanoparticles in base fluid causes increase in electrical conductivity of Tm₂O₃-EG nanofluids. The enhancement in electrical conductivity of nanosuspensions of thulium oxide is dependent on particle size.
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland
  • Institute of Electronic Materials Technology, Warsaw, Poland
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland
  • [1] G. Huminic, A. Huminic, Renew. Sustain. Energy Rev. 16, 5625 (2012), doi: 10.1016/j.rser.2012.05.023
  • [2] N. Putra, Yanuar, F.N. Iskandar, Exp. Therm. Fluid Sci. 35, 1274 (2011), doi: 10.1016/j.expthermflusci.2011.04.015
  • [3] D. Wen, G. Lin, S. Vafaei, K. Zhang, Particuology 7, 141 (2009), doi: 10.1016/j.partic.2009.01.007
  • [4] M. Hojjat, S. Etemad, R. Bagheri, J. Thibault, Int. Commun. Heat Mass 38, 144 (2011), doi: 10.1016/j.icheatmasstransfer.2010.11.019
  • [5] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energy Rev. 53, 779 (2016), doi: 10.1016/j.rser.2015.09.033
  • [6] S. Thomas, C. Balakrishna Panicker Sobhan, Nanoscale Res. Lett. 6, 377 (2011), doi: 10.1186/1556-276X-6-377
  • [7] H. Xie, W. Yu, Y. Li, J. Phys. D Appl. Phys. 42, 095413 (2009), doi: 10.1088/0022-3727/42/9/095413
  • [8] K. Prekas, T. Shah, N. Soin, M. Rangoussi, S. Vassiliadis, E. Siores, J. Coll. Interface Sci. 401, 58 (2013), doi: 10.1016/j.jcis.2013.03.040
  • [9] T. Brehm, G. Pereira, C.R. Leal, C. Gonsalves, J.P. Borges, M.T. Cidade, Phys. Scr. 90, 035802 (2015), doi: 10.1088/0031-8949/90/3/035802
  • [10] M. Dong, L.P. Shen, H. Wang, H.B. Wang, J. Miao, J. Nanomater. 2013, 1 (2013), doi: 10.1155/2013/842963
  • [11] S. Ganguly, S. Sikdar, S. Basu, Powder Technol. 196, 326 (2009), doi: 10.1016/j.powtec.2009.08.010
  • [12] H. Konakanchi, R. Vajjha, D. Misra, D. Das, J. Nanosci. Nanotechnol. 11, 6788 (2011), doi: 10.1166/jnn.2011.4217
  • [13] M. Kole, T. Dey, J. Appl. Phys. 113, 084307 (2013), doi: 10.1063/1.4793581
  • [14] M. Hadadian, E.K. Goharshadi, A. Youssefi, J. Nanopart. Res. 16, 2788 (2014), doi: 10.1007/s11051-014-2788-1
  • [15] E.K. Goharshadi, H. Azizi-Toupkanloo, M. Karimi, Microfluid. Nanofluidics 18, 667 (2014), doi: 10.1007/s10404-014-1465-0
  • [16] H. Azizi-toupkanloo, E.K. Goharshadi, P. Nancarrow, Powder Technol. 25, 801 (2014), doi: 10.1016/j.apt.2013.11.015
  • [17] J. Fal, A. Barylyak, K. Besaha, Y.V. Bobitski, M. Cholewa, I. Zawlik, K. Szmuc, J. Cebulski, G. Żyła, Nanoscale Res. Lett. 11, 1 (2016), doi: 10.1186/s11671-016-1590-7
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.