Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 118-120
Article title

The Influence of Potential Energy Shape on the Total Electrical Efficiency of the Energy Harvester

Title variants
Languages of publication
In this theoretical work we analyze the total effective electric power versus base acceleration amplitude generated by the energy harvesting system with an electromagnetic transducer. We compare the results for both linear and nonlinear case. The transition from linear to nonlinear behavior of the system can be achieved by the change of device geometry. To improve the power efficiency of our device we also examine the dependence of crossover point of acceleration amplitudes where generated power in the nonlinear system starts to exceed the generated power in the linear regime. We have found that the crossover point can be moved towards relatively small base acceleration values by appropriate selection of system nonlinearity "strength".
Physical description
  • [1] S.P. Beeby, M.J. Tudor, N.M. White, Measur. Sci. Technol. 17, R175 (2006), doi: 10.1088/0957-0233/17/12/R01
  • [2] K.V. Selvan, M.S.M. Ali, Renew. Sust. Energ. Rev. 54, 1035 (2016), doi: 10.1016/j.rser.2015.10.046
  • [3] H. Sodano, D. Inman, G. Park, The Shock and Vibration Digest 36, 197 (2004), doi: 10.1177/0583102404043275
  • [4] H. Sodano, D. Inman, G. Park, J. Intell. Mater. Syst. Struct. 16, 67 (2005), doi: 10.1177/1045389X05047210
  • [5] S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D 239, 640 (2010), doi: 10.1016/j.physd.2010.01.019
  • [6] R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013), doi: 10.1088/0964-1726/22/2/023001
  • [7] W. Martens, U. von Wagner, G. Litak, Eur. Phys. J. Spec. Top. 222, 1665 (2013), doi: 10.1140/epjst/e2013-01953-5
  • [8] F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009), doi: 10.1103/PhysRevLett.102.080601
  • [9] K. Kucab, G. Górski, J. Mizia, Eur. Phys. J. Spec. Top. 222, 1607 (2013), doi: 10.1140/epjst/e2013-01949-1
  • [10] L. Haitao, Q. Weiyang, L. Chunbo, D. Wangzheng, Z. Zhiyong, Smart Mater. Struct. 25, 015001 (2016), doi: 10.1088/0964-1726/25/1/015001
  • [11] B.P. Mann, B.A. Owens, J. Sound Vibrat. 329, 1215 (2010), doi: 10.1016/j.jsv.2009.11.034
  • [12] M. Borowiec, G. Litak, S. Lenci, in: Discontinuity and Complexity in Nonlinear Physical Systems, Eds. J.A. Tenreiro Machado, D. Baleanu, A.C.J. Luo, Springer, New York 2014, p. 315, doi: 10.1007/978-3-319-01411-1
  • [13] S. Kwon, J. Park, K. Law, Smart Mater. Struct. 22, 055007 (2013), doi: 10.1088/0964-1726/22/5/055007
  • [14] Ch. Lee, D. Stamp, N.R. Kapania, J.O. Mur-Miranda, Proc. SPIE 7683, 76830Y (2010), doi: 10.1117/12.849895
  • [15] B.P. Mann, N.D. Sims, J. Sound Vibrat. 319, 515 (2009), doi: 10.1016/j.jsv.2008.06.011
  • [16] K. Kucab, G. Górski, J. Mizia, Eur. Phys. J. Spec. Top. 224, 2909 (2015), doi: 10.1140/epjst/e2015-02597-1
  • [17] D. Vokoun, M. Beleggia, L. Heller, P. Šittner, J. Magn. Magn. Mater. 321, 3758 (2009), doi: 10.1016/j.jmmm.2009.07.030
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.