PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 94-96
Article title

On Generalized Landau Levels

Content
Title variants
Languages of publication
EN
Abstracts
EN
We consider the dispersion of energy levels for both standard and inverted quantum harmonic oscillators in the presence of a uniform electromagnetic field. For this analysis we use a solution of the corresponding eigenproblem in terms of the Kummer functions. We find a complete description of the energy levels for a particle of mass m and electric charge q subject to the action of a harmonic oscillator and simultaneous uniform magnetic and electric fields. We also analyze the effect of spin on energy levels for an electron.
Keywords
EN
Contributors
author
  • Department of Mathematics and Physics, Szczecin University, Wielkopolska 15, 70-415 Szczecin, Poland
author
  • Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
References
  • [1] L.D. Landau, Z. Phys. 45, 430 (1927), doi: 10.1007/BF01397213
  • [2] G. Konstantinou, K. Maulopoulos, 2016 http://arXiv.org/abs/1609.00041v1
  • [3] T. Kramer, C. Bracher, M. Kleber, J. Opt. B Quant. Semiclass. Opt. 6, 21 (2004), doi: 10.1088/1464-4266/6/1/004
  • [4] T.K. Rebane, Teor. Eksp. Khim. 5, 3 (1969)
  • [5] T.K. Rebane, Opt. Spectrosc. 112, 813 (2012), doi: 10.1134/S0030400X12060161
  • [6] Q.-G. Lin, Commun. Theor. Phys. 38, 667 (2002)
  • [7] I.D. Vagner, V.M. Gvozdikov, P. Wyder, HIT J. Sci. Eng. A 3, 5 (2006)
  • [8] Wei Gao-Feng, Long Chao-Yun, Long Zheng-Wen, Qin Shui-Jie, Chin. Phys. C 32, 247 (2008), doi: 10.1088/1674-1137/32/4/001
  • [9] T. Taychatanapat, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Nat. Phys. 7, 621 (2011), doi: 10.1038/nphys2008
  • [10] M. Serbyn, D.A. Abanin, Phys. Rev. B 87, 115422 (2013), doi: 10.1103/PhysRevB.87.115422
  • [11] L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, Pergamon Press, Oxford 1965
  • [12] G. Barton, Ann. Phys. 166, 322 (1986), doi: 10.1016/0003-4916(86)90142-9
  • [13] W. Miller, Symmetry and Separation of Variables, in series Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading (MA) 1977
  • [14] I.A. Pedrosa, I. Guedes, Int. J. Mod. Phys. B 18, 1379 (2004), doi: 10.1142/S0217979204024732
  • [15] Problems and Solutions on Quantum Mechanics, Ed. Yung-Kuo Lim, World Sci., Singapore 1998
  • [16] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series 55, 1972
  • [17] H. Buchholz, The Confluent Hypergeometric Function, Springer-Verlag, Berlin 1969
  • [18] E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, Cambridge University Press, Cambridge (UK) 1996
  • [19] P.A.M. Dirac, Proc. R. Soc. A 117, 610 (1928), doi: 10.1098/rspa.1928.0023
  • [19a] P.A.M. Dirac, Proc. R. Soc. A 118, 351 (1928), doi: 10.1098/rspa.1928.0056
  • [20] O. Boyarkin, Advanced Particle Physics: Particles, Fields, and Quantum Electrodynamics Vol. 1, Taylor and Francis, 2011
  • [21] V.W. Hughes, T. Kinoshita, Rev. Mod. Phys. 71, 133 (1999), doi: 10.1007/978-1-4612-1512-7_14
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n1p22kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.