PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 77-80
Article title

Impact of Plesiomonas Shigelloides Strain CNCTC 144/92 Lipopolysaccharide on DPPC Liposome Membranes: EPR Method

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Membrane fluidity measurements were performed for synthetic DPPC liposomes sonicated in aqueous solution and doped by Plesiomonas shigelloides strain CNCTC 144/92 (serotype O74:H5) lipopolysaccharide (LPS) extracted from the phenol (LPS_{PhOH}) and water (LPS_{H₂O}) phases. Concentrations of LPS in relation to DPPC ranged from 0 to 1.4% (molar ratio). The EPR spin probe method was used to describe physicochemical properties of different regions of the lipid bilayer. Since TEMPO spin probe dissolves both in the hydrophobic region of the membrane and in an aquatic environment it is possible to determine the spectroscopic partition parameter F, indicating the changes that occur in the water-lipid interface. The 16-DOXYL probe distributed in the middle of the lipid bilayer makes it possible to obtain the rotational correlation time τ parameter, which provides information about fluidity changes in the liposome membrane. Here we report that increasing concentrations (mainly in the range of 0.4-0.8%) of investigated LPS_{PhOH} and LPS_{H₂O} significantly influence spectroscopic parameters (F and τ). The surface area of the DPPC liposomes membranes was affected predominantly by LPS_{H₂O} while the lipid bilayer was most influenced by LPS_{PhOH}.
Keywords
EN
Year
Volume
132
Issue
1
Pages
77-80
Physical description
Dates
published
2017-07
Contributors
author
  • Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland
author
  • Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland
author
  • Department of Land Protection, Opole University, 45-052 Opole, Oleska 22, Poland
References
  • [1] D. Man, R. Słota, M.A. Broda, G. Mele, J. Li, J. Biol. Inorg. Chem. 16, 173 (2011), doi: 10.1007/s00775-010-0715-1
  • [2] D. Man, I. Pisarek, M. Braczkowski, Nukleonika 58, 439 (2013)
  • [3] D. Man, I. Pisarek, M. Braczkowski, B. Pytel, R. Olchawa, J. Lipos. Res. 24, 106 (2014), doi: 10.3109/08982104.2013.839998
  • [4] B. Pytel, A. Filipiak, I. Pisarek, R. Olchawa, D. Man, Nukleonika 60, 455 (2015), doi: 10.1515/nuka-2015-0081
  • [5] R. Olchawa, D. Man, B. Pytel, Nukleonika 60, 395 (2015), doi: 10.1515/nuka-2015-0070
  • [6] D. Man, J. Liposome Res. 18, 225 (2008), doi: 10.1080/08982100802309461
  • [7] R. Wałęsa, D. Man, G. Engel, D. Siodłak, T. Kupka, T. Ptak, M.A. Broda, Chem. Biodivers. 12, 1007 (2015), doi: 10.1002/cbdv.201400179
  • [8] J.J. Farmer III, M.J. Arduino, F. Hickman-Brenner, in: The Prokaryotes, Vol. 6, Eds. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt, Springer, New York 2006, p. 564, doi: 10.1007/0-387-30746-x_19
  • [9] S. Yamada, S. Matsushita, S. Dejsirilert, Y. Kudoh, Epidemiol. Infect. 119, 121 (1997), doi: 10.1017/S0950268897007942
  • [10] H. Rautelin, A. Sivonen, A. Kuikka, O.V. Renkonen, V. Valtonen, T.U. Kosunen, Scand. J. Infect. Dis. 27, 495 (1995), doi: 10.3109/00365549509047052
  • [11] A.C.W. Lee, K.Y. Yuen, S.Y. Ha, D.C.K. Chiu, Y.L. Lau, Pediatr. Hematol. Oncol. 13, 265 (1996), doi: 10.3109/08880019609030826
  • [12] R.B. Clark, G.R. Westby, H. Spector, R.R. Soricelli, C.L. Young, J. Infect. 23, 89 (1991), doi: 10.1016/0163-4453(91)94217-8
  • [13] K. Fujita, M. Shirai, T. Ishioka, F. Kakuya, Acta Paediatr. Jpn. 36, 450 (1994), doi: 10.1111/j.1442-200X.1994.tb03222.x
  • [14] B. Beutler, E.Th. Rietschel, Nat. Rev. Immunol. 3, 169 (2003), doi: 10.1038/nri1004
  • [15] O. Westphal, K. Jann, in: Methods in Carbohydrate Chemistry, Vol. 5, Ed. R.L. Whistler, Academic Press, London 1965, p. 83
  • [16] T. Niedziela, S. Dag, J. Lukasiewicz, M. Dzieciatkowska, W. Jachymek, C. Lugowski, L. Kenne, Biochemistry 45, 10422 (2006), doi: 10.1021/bi0607709
  • [17] S.R. Haseley, O. Holst, H. Brade, Eur. J. Biochem. 247, 815 (1997), doi: 10.1111/j.1432-1033.1997.00815.x
  • [18] S.R. Haseley, O. Holst, H. Brade, Eur. J. Biochem. 251, 189 (1998), doi: 10.1046/j.1432-1327.1998.2510189.x
  • [19] M. Gao, W. D'Haeze, R. De Rycke, B. Wolucka, M. Holsters, Mol. Plant-Microbe Interact. 14, 857 (2001), doi: 10.1094/MPMI.2001.14.7.857
  • [20] M. Caroff, D.R. Bundle, M.B. Perry, Eur. J. Biochem. 139, 195 (1984), doi: 10.1111/j.1432-1033.1984.tb07994.x
  • [21] E.J. Shimshick, H.M. McConnell, Biochemistry 12, 2351 (1973), doi: 10.1021/bi00736a026
  • [22] M.A. Hemminga, Chem. Phys. Lipids 32, 323 (1983), doi: 10.1016/0009-3084(83)90040-3
  • [23] D. Man, R. Olchawa, K. Kubica, J. Lipos. Res. 20, 211 (2010), doi: 10.3109/08982100903286485
  • [24] D. Man, R. Olchawa, J. Lipos. Res. 23, 327 (2013), doi: 10.3109/08982104.2013.814139
  • [25] D. Man, R Olchawa, Eur. Biophys. J. 46, 325 (2016), doi: 10.1007/s00249-016-1172-8
  • [26] J. Lukasiewicz, M. Dzieciatkowska, T. Niedziela, W. Jachymek, A. Augustyniuk, L. Kenne, C. Lugowski, Biochemistry 45, 10434 (2006), doi: 10.1021/bi060774d
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n1p15kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.