Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 68-73
Article title

Antioxidant Properties and Stability of Geissospermum Reticulatum Tinctures: Lag Phase ESR and Chemometric Analysis

Title variants
Languages of publication
Geissospermum species are widely used in folk medicine in the Amazon region. This study was conducted to determine total phenolic and flavonoid contents of three tinctures of Geissospermum reticulatum barks from Peruvian Amazon and correlate these contents to the antioxidant activities and stability. Total content of phenolic compounds (from 694.91 to 1430.67 mg GAE/kg) and flavonoids (575.23-815.65 mg CAE/kg) were found by spectrophotometric methods. The obtained values were interpreted by artificial neural networks to describe the most beneficial conditions for tinctures. All tinctures have demonstrated the maximum of total flavonoid between 14 and 20 weeks of maceration, whereas the maximum of total flavonoid was between 25 and 30. The highest antioxidant properties were exhibited by tinctures in 3 different tests (ferric reducing ability of plasma, DPPH-ESR, oxygen radical absorbance capacity) after 35 weeks of maceration. The principal component analysis was employed to relate contents and properties. Results from the lag phase with α -(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) spin trap studies at 60°C demonstrated that the stability of tinctures were related to total phenolic content. Thus, samples with 550-800 mg GAE/kg were more stable than those with higher total phenolic contents. The most beneficial conditions for bark tinctures depend on aimed final products, e.g. maximum of polyphenols or flavonoids and long-term stability. Further studies about content and storage conditions are needed.

Physical description
  • Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, S. Banacha 1, 02-097 Warsaw, Poland
  • Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, S. Banacha 1, 02-097 Warsaw, Poland
  • Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, S. Banacha 1, 02-097 Warsaw, Poland
  • Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, S. Banacha 1, 02-097 Warsaw, Poland
  • [1] B. Gordillo-Román, M. Reina, L. Ruiz-Mesia, W. Ruiz-Mesia, P. Joseph-Nathan, Tetrahedron Lett. 54, 1693 (2013), doi: 10.1016/j.tetlet.2013.01.055
  • [2] A.K. Machado, A.C. Andreazza, T.M. Da Silva, A.A. Boligon, V. Do Nascimento, G. Scola, A. Duong, F.C. Cadoná, E.E. Ribeiro, I.B.M. Da Cruz, Oxid. Med. Cell. Longev. 2016, 8940850 (2016), doi: 10.1155/2016/8940850
  • [3] A.I.T.D. Oliveira, T.S. Mahmoud, G.N.L.D. Nascimento, J.F.M.D. Silva, R.S. Pimenta, P.B.D. Morais, Sci. World J. 2016, 9734181 (2016), doi: 10.1155/2016/9734181
  • [4] P. Kozielewicz, K. Paradowska, S. Erić, I. Wawer, M. Zloh, Monatsh. Chem. 145, 1201 (2014), doi: 10.1007/s00706-014-1212-y
  • [5] P.P.D.T. Espindola, P.D.S.D. Rocha, C.A. Carollo, W.O. Schmitz, Z.V. Pereira, M.D.C. Vieira, E.L.D. Santos, K. de Picoli Souza, Oxid. Med. Cell. Longev. 2016, 7910340 (2016), doi: 10.1155/2016/7910340
  • [6] Y.W. Mak, L.O. Chuah, R. Ahmad, R. Bhat, J. King Saud Univ. Sci. 25, 275 (2013), doi: 10.1016/j.jksus.2012.12.003
  • [7] M.J.S. Vital, A.L.B. Carneiro, L.F. Rocha, R.C.D.N. Amorim, M.R.M. Camargo, A.M. Pohlit, Rev. Fitos Eletronica 8, 137 (2013), doi: 10.5935/1808-9569.20130002
  • [8] M. Reina, W. Ruiz-Mesia, M. López-Rodriguez, L. Ruiz-Mesia, A. González-Coloma, R. Martinez-Diaz, J. Nat. Prod. 75, 928 (2012), doi: 10.1021/np300067m
  • [9] J.J. Sajkowska-Kozielewicz, P. Kozielewicz, N.M. Barnes, I. Wawer, K. Paradowska, Oxid. Med. Cell Longev. 2016, 2573580 (2016), doi: 10.1155/2016/2573580
  • [10] M.K. Jamróz, K. Paradowska, K. Zawada, K. Makarova, S. Kaźmierski, I. Wawer, J. Sci. Food Agr. 94, 246 (2014), doi: 10.1002/jsfa.6241
  • [11] N.M. Kocherginsky, Y.Y. Kostetski, A.I. Smirnov, J. Agric. Food Chem. 53, 6870 (2005), doi: 10.1021/jf051045s
  • [12] A.M. Frederiksen, R.M. Festersen, M.L. Andersen, J. Agric. Food Chem. 56, 8514 (2008), doi: 10.1021/jf801666e
  • [13] R.J. Elias, M.L. Andersen, L.H. Skibsted, A.L. Waterhouse, J. Agric. Food Chem. 57, 4359 (2009), doi: 10.1021/jf8035484
  • [14] V. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Method. Enzymol. 299, 152 (1999), doi: 10.1016/S0076-6879(99)99017-1
  • [15] Y.-S. Park, S.-T. Jung, S.-G. Kang, B.G. Heo, P. Arancibia-Avila, F. Toledo, J. Drzewiecki, J. Namiesnik, S. Gorinstein, Food Chem. 107, 640 (2008), doi: 10.1016/j.foodchem.2007.08.070
  • [16] B. Ou, M. Hampsch-Woodill, R.L. Prior, J. Agric. Food Chem. 49, 4619 (2001), doi: 10.1021/jf010586o
  • [17] M. Číž, H. Čížová, P. Denev, M. Kratchanova, A. Slavov, A. Lojek, Food Control 21, 518 (2010), doi: 10.1016/j.foodcont.2009.07.017
  • [18] I.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70 (1996), doi: 10.1006/abio.1996.0292
  • [19] W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT-Food Sci. Technol. 28, 25 (1995), doi: 10.1016/S0023-6438(95)80008-5
  • [20] R.L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53, 4290 (2005), doi: 10.1021/jf0502698
  • [21] J.H. Lee, S.J. Lee, S. Park, H.K. Kim, W.Y. Jeong, J.Y. Choi, N.-J. Sung, W.S. Lee, C.-S. Lim, G.-S. Kim, S.C. Shin, Food Chem. 124, 1627 (2011), doi: 10.1016/j.foodchem.2010.08.031
  • [22] K. Hornik, M. Stinchcombe, H. White, Neur. Networks 2, 359 (1989), doi: 10.1016/0893-6080(89)90020-8
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.