Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 34-38

Article title

Ferromagnetic Resonance in CdTe:Cr Single Crystals Containing Dopant-Related Macrodefects

Content

Title variants

Languages of publication

EN

Abstracts

EN
We study CdTe:Cr single crystals grown by the physical vapor transport method from pre-synthesized (Cd,Cr)Te alloys with 5 at.% of chromium nominal content. Macrodefects in the form of (111)-oriented thin platelets of dopant-related second phases were detected by scanning electron microscopy patterning of the chemically treated surfaces of the crystals. Magnetic properties of the crystals were investigated by ferromagnetic resonance using X-band Bruker spectrometer (9.43 GHz). Their ferromagnetic resonance spectra show several broad lines, which position depends on the orientation of the sample in relation to the external magnetic field in spectrometer. The angular dependences of ferromagnetic resonance spectra are interpreted in the frame of shape anisotropy of ferromagnetic resonance of the planar defects embedded in a weak magnetic CdTe matrix.

Keywords

EN

Contributors

author
  • Department of Machine Science and Fundamental Technologies, Drogobych State Pedagogical University, 24 Ivan Franko str., 82100 Drogobych, Ukraine
author
  • Faculty of Mathematics and Natural Sciences, Department of Biophysics, University of Rzeszów, S. Pigonia 1, 35-959 Rzeszów, Poland
author
  • Faculty of Mathematics and Natural Sciences, Department of Biophysics, University of Rzeszów, S. Pigonia 1, 35-959 Rzeszów, Poland
author
  • Faculty of Mathematics and Natural Sciences, Department of Experimental Physics, University of Rzeszów, S. Pigonia 1, 35-959 Rzeszów, Poland
author
  • Faculty of Mathematics and Natural Sciences, Department of Experimental Physics, University of Rzeszów, S. Pigonia 1, 35-959 Rzeszów, Poland

References

  • [1] T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014), doi: 10.1103/RevModPhys.86.187
  • [2] J. Blinowski, P. Kacman, J.A. Majewski, J. Cryst. Growth 159, 972 (1996), doi: 10.1016/0022-0248(95)00719-9
  • [3] H. Shoren, F. Ikemoto, K. Yoshida, N. Tanaka, K. Motizuki, Physica E 10, 242 (2001), doi: 10.1016/S1386-9477(01)00091-1
  • [4] N.A. Noor, S. Ali, A. Shaukat, J. Phys. Chem. Solids 72, 836 (2011), doi: 10.1016/j.jpcs.2011.04.008
  • [5] H. Saito, V. Zayets, S. Yamagata, K. Ando, Phys. Rev. Lett. 90, 207202 (2003), doi: 10.1103/PhysRevLett.90.207202
  • [6] S. Kuroda, N. Ozaki, N. Nishizawa, T. Kumekawa, S. Marcet, K. Takita, Sci. Technol. Adv. Mater. 6, 558 (2005), doi: 10.1016/j.stam.2005.05.020
  • [7] W.G. Wang, K.J. Yee, D.H. Kim, K.J. Han, X.R. Wang, C. Ni, T. Moriyama, A. Mathew, R. Opila, T. Zhu, J.Q. Xiao, Phys. Rev. B 77, 155207 (2008), doi: 10.1103/PhysRevB.77.155207
  • [8] D. Soundararajan, D. Mangalaraj, D. Nataraj, L. Dorosinskii, J. Santoyo-Salazar, J.-M. Ko, Curr. Appl. Phys. 10, 771 (2010), doi: 10.1016/j.cap.2009.09.013
  • [9] K.Y. Ko, M.G. Blamire, Appl. Phys. Lett. 88, 172101 (2006), doi: 10.1063/1.2197940
  • [10] M.R. Begam, N.M. Rao, S. Kaleemulla, N.S. Krishna, M. Kuppan, G. Krishnaiah, J. Subrahmanyam, Mater. Sci. Semicond. Proc. 18, 146 (2014), doi: 10.1016/j.mssp.2013.11.017
  • [11] T. Dietl, K. Sato, T. Fukushima, A. Bonanni, M. Jamet, A. Barski, S. Kuroda, M. Tanaka, P.N. Hai, H. Katayama-Yoshida, Rev. Mod. Phys. 87, 1311 (2015), doi: 10.1103/RevModPhys.87.1311
  • [12] S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, T. Dietl, Nat. Mater. 6, 440 (2007), doi: 10.1038/nmat1910
  • [13] M.G. Sreenivasan, K.L. Teo, X.Z. Cheng, M.B.A. Jalil, T. Liew, T.C. Chong, A.Y. Du, T.K. Chan, T. Osipowicz, J. Appl. Phys. 102, 053702 (2007), doi: 10.1063/1.2775535
  • [14] H. Kobayashi, Y. Nishio, K. Kanazawa, S. Kuroda, M. Mitome, Y. Bando, Physica B 407, 2947 (2012), doi: 10.1016/j.physb.2011.08.023
  • [15] V.D. Popovych, P. Sagan, M. Bester, B. Cieniek, M. Kuzma, J. Cryst. Growth 426, 173 (2015), doi: 10.1016/j.jcrysgro.2015.05.034
  • [16] V.D. Popovych, P. Sagan, Acta Phys. Pol. A 129, 49 (2016), doi: 10.12693/APhysPolA.129.49
  • [17] J. Dijkstra, H.H. Weitering, C.F. van Bruggen, C. Haas, R.A. de Groot, J. Phys. Condens. Matter 1, 9141 (1989), doi: 10.1088/0953-8984/1/46/008
  • [18] J.T. Vallin, G.D. Watkins, Phys. Rev. B 9, 2051 (1974), doi: 10.1103/PhysRevB.9.2051
  • [19] M.Z. Cieplak, M. Godlewski, J.M. Baranowski, Phys. Status Solidi B 70, 323 (1975), doi: 10.1002/pssb.2220700133
  • [20] M.E.J. Boonman, W. Mac, A. Twardowski, A. Wittlin, P.J.M. van Bentum, J.C. Maan, M. Dziemianiuk, Phys. Rev. B 61, 5358 (2000), doi: 10.1103/PhysRevB.61.5358
  • [21] Ferromagnetic Resonance, Ed. S.V. Vonsovskii, Pergamon Press, Oxford 1966
  • [22] Ferromagnetic Resonance - Theory and Application, Ed. O. Yalcin, InTech, Rijeka 2013, doi: 10.5772/50583
  • [23] C. Kittel, Introduction to Solid State Physics, Wiley, New York 2005
  • [24] U. Netzelmann, J. Appl. Phys. 68, 1800 (1990), doi: 10.1063/1.346613

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n1p07kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.