Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 11-14
Article title

Conversions of the Second-Rank Zero Field Splitting Parameters Measured Assuming the Fictitious Spin S'=1 to those for the Effective Spin S̃=2

Title variants
Languages of publication
We investigate feasibility of comparison between the zero field splitting parameters obtained experimentally based on the spin Hamiltonian with the fictitious spin S'=1 and those with the effective spin S̃=2. The former zero field splitting parameters have recently been measured for Fe²⁺ ions in forsterite Mg₂SiO₄, whereas the latter zero field splitting parameters are available in literature, e.g. for Fe²⁺ and Cr²⁺ (S̃=2) ions. It turns out that no unique direct comparison is feasible and hence appropriate conversion relations need to be derived. Methodology for such conversions is outlined. Various combinations of the possible energy level schemes for the spin S̃=2 and S'=1 are briefly described. Illustrative preliminary results concerning appropriate conversions of the second-rank zero field splitting parameters measured by high-frequency EMR for Fe²⁺ in natural and synthetic forsterite are presented. Detailed results and full analysis will be given elsewhere.
  • Faculty of Chemistry (FC), Adam Mickiewicz University (AMU), Umultowska 89B, 61-614 Poznań, Poland
  • Faculty of Chemistry (FC), Adam Mickiewicz University (AMU), Umultowska 89B, 61-614 Poznań, Poland
  • Visiting Professor: FC, AMU; On leave of absence from: Institute of Physics, West Pomeranian University of Technology Szczecin, al. Piastów 17, 70-310 Szczecin, Poland
  • [1] F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of $d$ Transition-Metal Compounds, Elsevier, Amsterdam 1992
  • [2] Multifrequency Electron Paramagnetic Resonance, Ed. S.K. Misra, Wiley-VCH, Weinheim 2011
  • [3] G.S. Shakurov, T.A. Shcherbakova, V.A. Shustov, Appl. Magn. Reson. 40, 135 (2011), doi: 10.1007/s00723-010-0191-3
  • [4] C. Rudowicz, Magn. Reson. Rev. 13, 1 (1987)
  • [4a] C. Rudowicz, Magn. Reson. Rev. 13, 335 (1988)
  • [5] C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36, 11 (2001), doi: 10.1081/ASR-100103089
  • [6] C. Rudowicz, M. Karbowiak, Coord. Chem. Rev. 287, 28 (2015), doi: 10.1016/j.ccr.2014.12.006
  • [7] C. Rudowicz, H.W.F. Sung, J. Phys. Soc. Jpn. 72, Supplement B 61 (2003), doi: 10.1143/JPSJS.72SB.61
  • [8] M. Zając, I.E. Lipiński, C. Rudowicz, J. Magn. Magn. Mater. 401, 1068 (2016), doi: 10.1016/j.jmmm.2015.11.007
  • [9] M. Kozanecki, C. Rudowicz, J. Magn. Reson., to be published
  • [10] P. Gnutek, C. Rudowicz, H. Ohta, T. Sakurai, Polyhedron 102, 261 (2015), doi: 10.1016/j.poly.2015.09.060
  • [11] T. Sakurai, K. Fujimoto, R. Matsui, K. Kawasaki, S. Okubo, H. Ohta, K. Matsubayashi, Y. Uwatoko, H. Tanaka, J. Magn. Reson. 259, 108 (2015), doi: 10.1016/j.jmr.2015.08.005
  • [12] J. Telser, J. Krzystek, A. Ozarowski, J. Biol. Inorg. Chem. 19, 297 (2014), doi: 10.1007/s00775-013-1084-3
  • [13] T. Sakurai, K. Fujimoto, R. Goto, S. Okubo, H. Ohta, Y. Uwatoko, J. Magn. Reson. 223, 41 (2012), doi: 10.1016/j.jmr.2012.07.020
  • [14] C.A. Morrison, Crystal Fields for Transition-Metal Ions in Laser Host Materials, Springer, Berlin 1992, doi: 10.1007/978-3-642-95686-7
  • [15] B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications, Wiley-VCH, New York 2000
  • [16] M. Wildner, M. Andrut, C. Rudowicz, in: Spectroscopic Methods in Mineralogy - EMU Notes Mineralogy, Vol. 6, Eds. A. Beran, E. Libowitzky, Eötvös University Press, Budapest 2004, Ch. 3, p. 93
  • [17] J.C. Gill, P.A. Ivey, J. Phys. C Solid State Phys. 7, 1536 (1974), doi: 10.1088/0022-3719/7/8/018
  • [18] M. Zając, C. Rudowicz, Acta Phys. Pol. A 132, 19 (2017), doi: 10.12693/APhysPolA.132.19.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.